Abstract:
Provided is a pressure sensor including a first optical waveguide inside a lower substrate, a graphene layer above the lower substrate, an upper substrate above the graphene layer, and spacers between the lower substrate and the upper substrate.
Abstract:
Provided herein is a gas sensor that includes a substrate, an insulating layer provided on the substrate, a first active layer disposed on the insulating layer, a second active layer which is disposed on the insulating layer and undergoes heterojunction with a portion of the first active layer, a first electrode and a second electrode which are disposed on the first active layer and are spaced apart from each other at a predetermined interval, and a third electrode and a fourth electrode which are disposed on the second active layer and are spaced apart from each other at a predetermined interval. The first active layer and the second active layer include different materials.
Abstract:
An optical waveguide for optical interconnection including a polymer sheet comprising a crosslinked product of a prepolymer, the prepolymer prepared by condensation reaction between a first compound represented by the formula Ar—H, where Ar comprises (a) a crosslinkable moiety at one end, (b) a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and (c) one or two repeating units selected from the group consisting of: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound consisting of an aromatic moiety.
Abstract translation:一种用于光学互连的光波导,其包括聚合物片,其包含预聚物的交联产物,所述预聚物通过由式Ar-H表示的第一化合物之间的缩合反应制备,其中Ar包含(a)一端的可交联部分, b)选自-O - , - S - , - COO - , - CO - , - SO 2 - , - SO 2 - 和-NH-的部分,和(c)一或两个选自 由以下组成:A为碳或氮,X为氢或卤素; 和由芳族部分组成的第二化合物。
Abstract:
Disclosed is a method of manufacturing a junction electronic device by disposing 2-Dimensional (2D) materials at desired positions by chemically exfoliating the 2D materials, and the method includes: forming a pattern by surface-treating a surface of a substrate; transferring a 2D material by spraying a liquid solution, in which 2D material flakes are dissolved, onto the substrate on which the pattern is formed; forming first electrodes at both sides of the 2D material disposed on the substrate; forming a dielectric layer on the first electrodes; and forming a second electrode on the dielectric layer.
Abstract:
A method of transferring graphene is provided. A method of transferring graphene in accordance with an exemplary embodiment of the present invention may include forming a graphene layer by composing graphene and a base layer, depositing a self-assembled monolayer on the graphene layer, and separating a combination layer comprising the self-assembled monolayer and the graphene layer from the base layer.
Abstract:
Provided is a biomaterial removing device including an air injection part, a first processing part spaced apart from the air injection part, and a second processing part spaced apart from the air injection part with the first processing part therebetween, wherein the first processing part includes a first biomaterial removing part configured to remove biomaterials included in air collected from the air injection part and a first monitoring part, and the second processing part includes a second biomaterial removing part configured to remove the residual biomaterials and a second monitoring part, wherein the first biomaterial removing part includes a dry air purifier, the second biomaterial removing part includes a wet air purifier, and the first biomaterial removing part and the second biomaterial removing part each include an image sensor.
Abstract:
Provided is a PCR tube including: an outer tube configured to provide a first space having a blocked lower portion; and an inner tube inserted to the first space. Here, the inner tube includes: an inner tube body configured to provide a second space; and a spiral structure protruding from a side surface of the inner tube body to the outside of the inner tube body, and a micro-channel is defined by the outer tube, the inner tube body, and the spiral structure in a state in which the inner tube is inserted into the first space.
Abstract:
Disclosed is a laser device. The laser device includes a substrate, a pump light source which is disposed on the substrate and provided with a light emitting layer configured to generate pump light, and an upper waveguide which is disposed above the pump light source in a first direction and provided with an upper resonator configured to allow laser light to be generated and resonate by using the pump light.
Abstract:
A method for providing collaboration services and a collaboration agent device for implementing the method, which allows the collaboration agent devices to handle common functions necessary for the collaboration services and the applications to indirectly interact with each other using the collaboration agent devices so that applications running executed in two or more smart devices can provide the collaboration services in collaboration with each other.
Abstract:
Disclosed is a fluid monitoring apparatus. The fluid monitoring apparatus includes a chamber configured to store a fluid, a resonator in the chamber, a light source disposed on the chamber and configured to provide pump light to the resonator, a detector configured to detect laser light generated in the resonator, and a control unit connected to the detector and the light source and configured to identify a physical quantity in the fluid by detecting a resonance wavelength of the laser light using a detection signal of the laser light.