Abstract:
Disclosed herein are a hybrid memory management apparatus and method for an many-to-one virtualization environment. The hybrid memory management apparatus is implemented in an inverse-virtualization-based multi-node computing system including multiple physical nodes, each containing hybrid memory in which DRAM and NVRAM coexist, a virtual machine, and hypervisors, and includes memory for storing at least one program, and a processor for executing the program, wherein the program includes a remote request service module for processing a page-related request with reference to the hybrid memory and responding to the page-related request by transmitting a result of processing, an internal request service module for processing an internal page fault request with reference to a hybrid memory and responding to the internal page fault request, and a data arrangement module for responding to an inquiry request for a location at which a newly added page is to be arranged in the hybrid memory.
Abstract:
An apparatus and method for managing a flow in a server virtualization environment, and a method of applying a QoS policy, the method including a flow processing unit configured to analyze a flow generated by a virtual machine (VM) to extract flow information, determine whether the flow is a new flow by comparing the extracted flow information with preset flow information, and apply a corresponding Quality of Service (QoS) policy to the flow, and a QoS management unit configured to, in a case in which the flow is a new flow, generate a QoS policy for the analyzed flow based on the extracted flow information and prestored virtual machine information, and transmit the generated QoS policy to the flow processing unit.
Abstract:
Disclosed herein are a metadata server and a method for distributing metadata in units of directories using the metadata server. The method includes receiving a request for at least one of creation, deletion and retrieval from a user file system; acquiring an inode corresponding to an identifier of a parent inode, which is included in the request; searching the parent inode for a dentry corresponding to the request when the request is a request to create a directory; selecting a secondary metadata server in which a new directory is to be created in order to distribute metadata in units of directories; requesting the selected secondary metadata server to create an inode; receiving an identifier of the created inode from the secondary metadata server; and adding a new dentry to the parent inode using the identifier of the inode.
Abstract:
A distributed storage server includes a plurality of data server devices and a plurality of metadata server devices. The metadata server devices store metadata associated with data which is distributively stored in the data server devices. A selected metadata server device checks whether a dangling directory occurs by performing a rename operation, based on information associated with a full path of a parent directory of a source and a full path of a parent directory of a target included in a request of the rename operation. When it is determined that the dangling directory does not occur, the selected metadata server device processes transactions directed to the metadata such that the rename operation is performed. The checking whether the dangling directory occurs is performed before a transaction period for processing the transactions.
Abstract:
Disclosed herein are a method and system for supporting user-level DMA I/O in a distributed file system environment. The system includes a DMA I/O library located in a user space and configured to process data-processing requests of an application using a control channel or a data channel, a distributed file system client process located in the user space and configured to process data while communicating with a remote distributed storage cluster, a VFS located in a kernel space, and a FUSE kernel module located in the kernel space, wherein the control channel is a path along which the DMA I/O library and the distributed file system client process are connected to each other through the VFS and the FUSE kernel module, and wherein the data channel is a path along which the DMA I/O library and the distributed file system client process are directly connected to each other.
Abstract:
Disclosed herein is a distributed file system using a torus network. The distributed file system may include multiple servers. The multiple servers are connected with each other through an n-dimensional torus network, and each of the multiple servers may be arranged along n-dimensional axes. Among the servers in the distributed file system, a server group of an (n−1)-dimensional torus network may be connected to a public network. Different loads of the distributed file system may be distributed based on the axes. Through the distribution, the processing performance of the distributed file system may be improved.
Abstract:
Provided are a method, apparatus, and system for providing a multi-tenant cloud service, which can guarantee quality of service (QOS) in units of flows and virtual machines (VMs). A dynamic virtual flow switch includes a switch flow agent configured to receive and store virtual machine QOS information about each of a plurality of virtual machines operating in a plurality of computer servers and flow QOS information about a flow generated by the virtual machine from a virtual flow controller and a flow processing unit configured to receive the flow generated by the virtual machine and determine a QOS priority of the flow based on the stored virtual machine QOS information of the virtual machine and flow QOS information of the flow.