摘要:
Two adjacent objects with a gap between the objects rotate in a hot atmosphere with a temperature greater than 300 F in a gas turbine. Automatic and accurate contactless measurement of the gap is performed by taking images of the gap. An image, preferably an infra-red image is taken from the gap, a processor extracts the two edges from the image of the gap. The processor also determines a line through the pixels of an edge by applying a Hough transform on the pixels. The edges are substantially parallel. A line substantially perpendicular to the lines is also determined. Using the substantially parallel lines and the line substantially perpendicular to the substantially parallel lines the processor determines a width of the gap.
摘要:
A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.
摘要:
Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.
摘要:
Two adjacent objects with a gap between the objects rotate in a hot atmosphere with a temperature greater than 300 F in a gas turbine. Automatic and accurate contactless measurement of the gap is performed by taking images of the gap. An image, preferably an infra-red image is taken from the gap, a processor extracts the two edges from the image of the gap. The processor also determines a line through the pixels of an edge by applying a Hough transform on the pixels. The edges are substantially parallel. A line substantially perpendicular to the lines is also determined. Using the substantially parallel lines and the line substantially perpendicular to the substantially parallel lines the processor determines a width of the gap.
摘要:
A light scattering sensing system and method. In one embodiment, the system includes a sample branch configured to collect light signals backscattered from scattering centers contained in a coherence volume of a medium under evaluation, the sample branch including a multi-mode optical waveguide. In one embodiment, the method includes radiating low-coherence light into a scattering medium using a multi-mode optical waveguide, and collecting light signals backscattered by the scattering centers and light reflected by an end surface of the multi-mode optical waveguide using the multi-mode optical waveguide.
摘要:
A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44);generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.
摘要:
Inspecting a turbine includes positioning respective ends of a plurality of optical fibers within a high temperature region of the turbine wherein the respective first ends are aligned as a one-dimensional array. Energy emitted from an image area on a component of the turbine, is received at the ends of the optical fiber. The optical fibers convey the received energy to the other ends of the fibers that are located outside of the turbine. Outside the turbine an image of the respective other ends is captured, wherein the other ends are also aligned in a one-dimensional area. Additionally, for imaging a rotating component, a plurality of one-dimensional images of the other ends can be respectively captured at corresponding rotational positions of the component and used to create a two-dimensional image of the rotating component.
摘要:
Inspecting a turbine includes positioning respective ends of a plurality of optical fibers within a high temperature region of the turbine wherein the respective first ends are aligned as a one-dimensional array. Energy emitted from an image area on a component of the turbine, is received at the ends of the optical fiber. The optical fibers convey the received energy to the other ends of the fibers that are located outside of the turbine. Outside the turbine an image of the respective other ends is captured, wherein the other ends are also aligned in a one-dimensional area. Additionally, for imaging a rotating component, a plurality of one-dimensional images of the other ends can be respectively captured at corresponding rotational positions of the component and used to create a two-dimensional image of the rotating component.
摘要:
A system for detecting the presence of one or more fluids in a rotating component of a gas turbine engine. A first reflector structure includes a first face that receives light from the light source. The first reflector structure reflects at least a substantial portion of the received light from the light source if a second face thereof is in the presence of a first fluid and does not reflect a substantial portion of the received light from the light source if the second face is in the presence of a second fluid. A reflection receiver structure receives light reflected by the first reflector structure. If the reflection receiver structure receives a first predetermined amount of light reflected by the first reflector structure it can be determined that the second face of the first reflector structure is not in the presence of the second fluid.
摘要:
A system for detecting the presence of one or more fluids in a rotating component of a gas turbine engine. A first reflector structure includes a first face that receives light from the light source. The first reflector structure reflects at least a substantial portion of the received light from the light source if a second face thereof is in the presence of a first fluid and does not reflect a substantial portion of the received light from the light source if the second face is in the presence of a second fluid. A reflection receiver structure receives light reflected by the first reflector structure. If the reflection receiver structure receives a first predetermined amount of light reflected by the first reflector structure it can be determined that the second face of the first reflector structure is not in the presence of the second fluid.