Abstract:
An alkali metal/solid cathode electrochemical cell, such as of a Li/SVO couple, having the cathode material supported on a titanium current collector screen coated with a carbonaceous material is described. The thusly-coated titanium current collector provides the cell with higher rate capability in comparison to cells of a similar chemistry having the cathode active material contacted to an uncoated titanium current collector.
Abstract:
A mixture of polymeric binders that is insoluble in nonaqueous organic electrolytes activating alkali metal or alkali metal ion electrochemical cells, is described. The mixed binder formulation provides electrodes that are flexible and non-brittle, and cells incorporating the electrodes are dischargeable at elevated temperatures. A preferred binder formulation is a mixture of polyvinylidene and polyimide binders.
Abstract:
The invention includes a method of using a cell, such as a battery. In a method according to the invention, the cell is charged, discharged, and a voltage of the cell is measured after the discharge period. The measured voltage is compared to a standard voltage, and then the cell is charged again.
Abstract:
A new sandwich negative electrode design for a secondary cell is provided comprising a “sacrificial” alkali metal along with a carbonaceous anode material. In the case of a hard carbon anode material, the sacrificial alkali metal is preferably lithium and is sized to compensate for the initial irreversible capacity of this anode material. Upon activating the cells, the lithium metal automatically intercalates into the hard carbon anode material. That way, the sacrificial lithium is consumed and compensates for the generally unacceptable irreversible capacity of hard carbon. The superior cycling longevity of hard carbon now provides a secondary cell of extended use beyond that know for conventional secondary cells having only graphitic anode materials.
Abstract:
An electrode configuration for use in a defibrillator battery to improve the battery capacity and its utilization efficiency by using a combination SVO cell and a CFx cell discharged in parallel, is described. In other words, the anode of the SVO cell is connected to the anode of the CFx cell and the cathode of the SVO cell is connected to the cathode of the CFx cell. The SVO cell provides a relatively high discharge rate while the CFx cell results in long service life. This results in 100% of the usable capacity from both cells being utilized.
Abstract:
An electrochemical cell of either a primary or a secondary chemistry, is described. In either case, the cell has a negative electrode of lithium or of an anode material which is capable of intercalating and de-intercalating lithium coupled with a positive electrode of a cathode active material. A dicarbonate compound is mixed with either the anode material or the cathode active material prior to contact with its current collector. The resulting electrode couple is activated by a nonaqueous electrolyte. The electrolyte flows into and throughout the electrodes causing the dicarbonate additive to dissolve in the electrolyte. The dicarbonate solute is then able to contact the lithium to provide an electrically insulating and ionically conducting passivation layer thereon.
Abstract:
alkali metal electrochemical cell capable of discharge at elevated pressure and temperature is described. To help increase the cell's pressure tolerance, the cell header has an internal groove surrounding the glass-to-metal seal.
Abstract:
An alkali metal, solid cathode, non-aqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one organic sulfate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and a sulfate additive.
Abstract:
An electrochemical cell comprising a medium rate electrode region intended to be discharged under a substantially constant drain and a high rate electrode region intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electrolyte.
Abstract:
A rechargeable alkali metal electrochemical cell, and preferably a lithium-ion secondary cell, constructed of low magnetic susceptibility materials, is described. The non-magnetic characteristics enable the secondary cell to be used within the confines of a Magnetic Resonance Imaging system. The cell includes an electrolyte solution comprising ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate.