摘要:
To provide equal cell programming conditions, the integrated circuit device has a number of bitline compensation elements each coupled in series with a separate bitline, and a number of wordline compensation elements each coupled in series with a separate wordline. The resistances in these compensation elements are such that a variation in a sum of (1) the resistance along the corresponding bitline of a cell between the first terminal of the cell and a far terminal of the bitline compensation element that is coupled to the corresponding bitline and (2) the resistance along the corresponding wordline of the cell between a second terminal of the cell and a far terminal of the wordline compensation element that is coupled to the corresponding wordline, is minimized across the cells of the array.
摘要:
A flash memory for code and data storage includes a code memory array having fast read access and suitability for execute in place, a data memory array having the characteristics of low bit cost and high density storage, and a suitable interface to provide access to both the code and data. The code memory array may be a NOR array or a performance-enhanced NAND array. The memory may be implemented in a single chip package or multi-chip package solution.
摘要:
In accordance with an embodiment of the present invention, a semiconductor wafer has a plurality of dies each having a circuit and a plurality of contact pads. The plurality of contact pads include a first contact pad to receive a power supply voltage, a second contact pad to receive a ground voltage, and a third contact pad to receive a test control signal. The third contact pad is connected to a programmable self-test engine (PSTE) embedded on the corresponding die so that the test control signal activates the PSTE to initiate a self-test. A probe card has a plurality of sets of probe pins, each set of probe pins having three probe pins for contacting the first, second, and third contact pads of one of a corresponding number of the plurality of dies. During wafer test, the plurality of sets of probe pins come in contact with a corresponding number of dies so that the self-test is carried out simultaneously in the corresponding number of dies.
摘要:
In accordance with an embodiment of the present invention, a semiconductor wafer has a plurality of dies each having a circuit and a plurality of contact pads. The plurality of contact pads include a first contact pad to receive a power supply voltage, a second contact pad to receive a ground voltage, and a third contact pad to receive a test control signal. The third contact pad is connected to a programmable self-test engine (PSTE) embedded on the corresponding die so that the test control signal activates the PSTE to initiate a self-test. A probe card has a plurality of sets of probe pins, each set of probe pins having three probe pins for contacting the first, second, and third contact pads of one of a corresponding number of the plurality of dies. During wafer test, the plurality of sets of probe pins come in contact with a corresponding number of dies so that the self-test is carried out simultaneously in the corresponding number of dies.
摘要:
In accordance with an embodiment of the present invention, a semiconductor wafer has a plurality of dies each having a circuit and a plurality of contact pads. The plurality of contact pads include a first contact pad to receive a power supply voltage, a second contact pad to receive a ground voltage, and a third contact pad to receive a test control signal. The third contact pad is connected to a programmable self-test engine (PSTE) embedded on the corresponding die so that the test control signal activates the PSTE to initiate a self-test. A probe card has a plurality of sets of probe pins, each set of probe pins having three probe pins for contacting the first, second, and third contact pads of one of a corresponding number of the plurality of dies. During wafer test, the plurality of sets of probe pins come in contact with a corresponding number of dies so that the self-test is carried out simultaneously in the corresponding number of dies.
摘要:
In accordance with an embodiment of the present invention, an array of non-volatile memory cells are arranged along rows and columns. Each memory cell has a drain region spaced apart from a source region to form a channel region therebetween. The drain region has a greater depth than the source region. Each memory cell further has a stack of floating gate and select gate extending over the channel region, the select gate of the cells along each row being connected together to form a wordline. Each of a plurality of data lines is coupled to the drain region of at least a portion of a column of cells. Each of a plurality of source lines is coupled to a source region of a plurality of cells along at least a portion of a row of cells, wherein injection of hot electrons from a portion of the channel region near the source region to the floating gate is induced in a selected memory cell in the array by applying a first voltage to a selected data line to which the drain of the selected memory cell is coupled, a second positive voltage to a word line to which the selected gate of the selected memory cell is coupled, and a third positive voltage to a source line to which the source of the selected memory cell is coupled, wherein the injection of hot electrons increases a threshold voltage of the selected cell.
摘要:
In accordance with the present invention, a non-volatile integrated circuit memory includes an EEPROM array comprising a plurality of memory cells and a flash EPROM array comprising a second plurality of memory cells, wherein the EEPROM array is capable of being erased byte-by-byte or word-by-word, and the flash EPROM array is capable of being erased sector-by-sector. Both arrays are formed using the same memory cell which is programmed using hot-electron injection and is erased using Fowler-Nordheim tunneling.
摘要:
An improved charge transfer stage with an expanded output voltage range and high charge transfer efficiency is described. The charge transfer stage can be implemented as an output stage in a four phase clock negative charge pump system. The charge transfer stage comprises a PMOS pass transistor coupling the transfer stage input and output, a resistor between the transfer stage input and the pass transistor gate, a clock terminal, a capacitor configured PMOS transistor coupling the clock terminal to the gate of the pass transistor, and a diode from the transfer stage output to ground. When the transfer stage input goes low, charge is coupled through the resistor to pre-charge the gate of the pass transistor. The resistor has a higher junction breakdown voltage than a transistor which allows the gate of the pass transistor to be driven to a larger voltage. To provide sufficient charge to turn on the pass transistor, a logic high level greater than the power supply, such as 2 VCC, can be used for the clock signal coupled through the capacitor configured transistor to the gate of the pass transistor. To prevent the 2 VCC logic high level from forward biasing the p-n junction formed by the source and drain of the PMOS capacitor configured transistor with the well, the source, drain and well are coupled together. The charge transfer stage also includes a p-n junction diode coupled from the output of the stage to ground.
摘要:
A flash memory for code and data storage includes a code memory array having fast read access and suitability for execute in place, a data memory array having the characteristics of low bit cost and high density storage, and a suitable interface to provide access to both the code and data. The code memory array may be a NOR array or a performance-enhanced NAND array. The memory may be implemented in a single chip package or multi-chip package solution.
摘要:
A serial flash memory is provided with multiple configurable pins, at least one of which is selectively configurable for use in either single-bit serial data transfers or multiple-bit serial data transfers. In single-bit serial mode, data transfer is bit-by-bit through a pin. In multiple-bit serial mode, a number of sequential bits are transferred at a time through respective pins. The serial flash memory may have 16 or fewer pins, and even 8 or fewer pins, so that low pin count packaging such as the 8-pin or 16-pin SOIC package and the 8-contact MLP/QFN/SON package may be used. The availability of the single-bit serial type protocol enables compatibility with a number of existing systems, while the availability of the multiple-bit serial type protocol enables the serial flash memory to provide data transfer rates, in systems that can support them, that are significantly faster than available with standard serial flash memories.