Abstract:
This disclosure relates to a process for polymerization, and in particular to minimizing undesired polymerization reactions downstream of a polymerization reaction zone, for instance by use of a quenching agent that enables fast reaction rates with active polymerization catalyst in the polymerization effluent, so as to quench the catalyst quickly, thereby preventing uncontrolled polymerization reactions. A preferred quenching agent is methanol. Also provided are means for treating polymer recycle streams containing oxygenates, which may result from the use of such quench agents, particularly in polymerization processes including polyene (e.g., diene) monomers.
Abstract:
Branched ethylene-propylene-diene elastomers (bEPDM) and processes for making the bEPDM's comprising combining a catalyst precursor and an activator at a temperature within a range from 90° C. to 160° C. with ethylene, a C3 to C12 α-olefin, a non-conjugated diene, and a dual-polymerizable diene, where the catalyst precursor is a metallocene catalyst precursor, preferably according to one of various structures including any two ligands selected from cyclopentadienyl ligands and ligands isolobal to the cyclopentadienyl group.
Abstract:
A blended multimodal polymer product is disclosed that comprises a first polymer, wherein the first polymer is a homopolymer of propylene or a propylene copolymer having an ethylene or a C4 to C10 olefin comonomer; and a second polymer, wherein the second polymer is a propylene homopolymer and a propylene copolymer having an ethylene or a C4 to C10 olefin comonomer, and wherein the first polymer and second polymer have a difference in heat of fusion of about 25 J/g or more. Methods for making such a polymer product using at least two reactors in parallel and for separating a propylene-based polymer from a solvent using a liquid-phase separator are also disclosed.
Abstract:
The present disclosure provides methods for producing an olefin polymer by contacting a C3-C40 olefin, ethylene and a diene with a catalyst system including an activator and a metallocene catalyst compound comprising a substituted or unsubstituted indacenyl group and obtaining a C3-C40 olefin-ethylene-diene terpolymer typically comprising from 1 to 35 mol % of ethylene, from 98.9 to 65 mol % C3-C40 olefin, and, optionally, from 0.1 to 10 mol % diene. Preferably, a propylene-ethylene-ethylidene norbornene is obtained.
Abstract:
The present disclosure provides methods for producing an olefin polymer by contacting a C3-C40 olefin, ethylene and a diene with a catalyst system including an activator and a metallocene catalyst compound comprising a substituted or unsubstituted indacenyl group and obtaining a C3-C40 olefin-ethylene-diene terpolymer typically comprising from 1 to 35 mol % of ethylene, from 98.9 to 65 mol % C3-C40 olefin, and, optionally, from 0.1 to 10 mol % diene. Preferably, a propylene-ethylene-ethylidene norbornene is obtained.
Abstract:
The present disclosure provides methods for producing an olefin polymer by contacting a C3-C40 olefin, ethylene and a diene with a catalyst system including an activator and a metallocene catalyst compound comprising a substituted or unsubstituted indacenyl group and obtaining a C3-C40 olefin-ethylene-diene terpolymer typically comprising from 30 to 55 mol % ethylene, from 69.09 to 45 mol % C3 to C40 comonomer, and from 0.01 to 7 mol % diene wherein the Tg of the terpolymer is −28° C. or less. Preferably, a propylene-ethylene-ethylidene norbornene is obtained.
Abstract:
The present disclosure provides methods for producing an olefin polymer by contacting a C3-C40 olefin, ethylene and a diene with a catalyst system including an activator and a metallocene catalyst compound comprising a substituted or unsubstituted indacenyl group and obtaining a C3-C40 olefin-ethylene-diene terpolymer typically comprising from 1 to 35 mol % of ethylene, from 98.9 to 65 mol % C3-C40 olefin, and, optionally, from 0.1 to 10 mol % diene. Preferably, a propylene-ethylene-ethylidene norbornene is obtained.
Abstract:
The invention relates to purification of plasticizer, particularly for use in a polymer production process and plant. More particularly, the invention relates to purification of plasticizer, such as by gas stripping, for use in a process for in-line blending of polymer and plasticizer.
Abstract:
This disclosure relates to a process for polymerization, and in particular to minimizing undesired polymerization reactions downstream of a polymerization reaction zone, for instance by use of a quenching agent that enables fast reaction rates with active polymerization catalyst in the polymerization effluent, so as to quench the catalyst quickly, thereby preventing uncontrolled polymerization reactions. A preferred quenching agent is methanol. Also provided are means for treating polymer recycle streams containing oxygenates, which may result from the use of such quench agents, particularly in polymerization processes including polyene (e.g., diene) monomers.