摘要:
An implantable biosensor system for monitoring and optionally alleviating a physiological condition in a patient is provided and includes (a) at least one sensor for sensing at least one parameter of a physiological condition and for generating electrical sensor signals representative of the physiological condition; and (b) a first acoustic activatable transducer being directly or indirectly coupled with the at least one sensor, the first acoustic activatable transducer being for converting a received acoustic interrogation signal from outside the patient's body into an electrical power for energizing the processor, the first acoustic activatable transducer further being for converting the electrical sensor signals of the at least one sensor into acoustic signals receivable out of the patient's body, such that information pertaining to the at least one parameter of the physiological condition can be relayed outside the patient's body upon generation of an acoustic interrogation signal.
摘要:
A telemetry system and method for providing spatial positioning information from within a patient's body are disclosed. The system includes at least one implantable telemetry unit which includes (a) at least one first transducer being for converting a power signal received from outside the body, into electrical power for powering the at least one implantable telemetry unit; (b) at least one second transducer being for receiving a positioning field signal being received from outside the body; and (c) at least one third transducer being for transmitting a locating signal transmittable outside the body in response to the positioning field signal.
摘要:
Systems and methods for determining cardiac output are disclosed. An illustrative method of determining cardiac output includes sensing an arterial pressure waveform using a pressure sensor located within a pulmonary artery, identifying a valve closure time associated with the pulmonary valve using the sensed arterial pressure waveform, estimating stroke volume using the systolic portion of the arterial pressure waveform and the valve closure time, and obtaining a measure of cardiac output based on the estimated stroke volume.
摘要:
Systems and methods for determining cardiac output are disclosed. An illustrative method of determining cardiac output includes sensing an arterial pressure waveform using a pressure sensor located within a pulmonary artery, identifying a valve closure time associated with the pulmonary valve using the sensed arterial pressure waveform, estimating stroke volume using the systolic portion of the arterial pressure waveform and the valve closure time, and obtaining a measure of cardiac output based on the estimated stroke volume.
摘要:
An automatic drug dispensing system that dispenses variable amounts or types of drugs to treat a particular medical condition of a patient, the system comprising a medical sensor which may be implanted in or otherwise coupled to a body surface of a patient, wherein the sensor is configured to measure one or more physiological parameters of the patient; a user interface configured for receiving input relating to the patient's current condition; and a processor configured to determine one or more of a drug selection, dosage, and timing regime based at least in part on information received from the medical sensor and user interface.
摘要:
Systems and methods for communicating with an implant within a patient's body using acoustic telemetry includes an external communications device attachable to the patient's skin. The device includes an acoustic transducer for transmitting acoustic signals into the patient's body and/or for receiving acoustic signals from the implant. The device includes a battery for providing electrical energy to operate the device, a processor for extracting data from acoustic signals received from the implant, and memory for storing the data. The device may include an interface for communicating with a recorder or computer, e.g., to transfer data from the implant and/or to receive instructions for controlling the implant. The device is secured to the patient's skin for controlling, monitoring, or otherwise communicating with the implant, while allowing the patient to remain mobile.
摘要:
An acoustic biosensor is provided for deployment at an implantation site within a body, such as an abdominal aortic aneurysm. The biosensor includes a sensor element for measuring a physiological condition at the implantation site, and for generating an information signal representative of the physiological condition. The biosensor further includes a piezoelectric transducer element for converting an externally originated acoustic interrogation signal into energy for operating the sensor, and for modulating the interrogation signal, e.g., by employing a switching element to alternate the mechanical impedance of the transducer element, to transmit the information signal outside of the body.
摘要:
An acoustic biosensor is provided for deployment at an implantation site within a body, such as an abdominal aortic aneurysm. The biosensor includes a sensor element for measuring a physiological condition at the implantation site, and for generating an information signal representative of the physiological condition. The biosensor further includes a piezoelectric transducer element for converting an externally originated acoustic interrogation signal into energy for operating the sensor, and for modulating the interrogation signal, e.g., by employing a switching element to alternate the mechanical impedance of the transducer element, to transmit the information signal outside of the body.
摘要:
A telemetry system for monitoring a rejection reaction of a transplanted organ being transplanted within a patient's body is provided. The telemetry system includes (a) a telemetry control unit located outside the body of the patient; and (b) a telemetry monitoring unit implanted within the body of the patient, the telemetry monitoring unit including: (i) at least one acoustic transducer being for receiving an acoustic signal from the telemetry control unit and converting the acoustic signal into a first electrical signal, the at least one acoustic transducer further being for receiving a second electrical signal and converting the second electrical signal into a transmitted acoustic signal receivable by the telemetry monitoring unit; and (ii) a plurality of electrodes positionable in intimate contact with, or deep within, the transplanted organ and being in communication with the at least one acoustic transducer, the plurality of electrodes being for passing the first electrical signal through the transplanted organ for monitoring the electrical impedance thereof and further being for relaying the second electrical signal corresponding to the electrical impedance to the at least one acoustic transducer so as to enable the monitoring of the presence or absence of the rejection reaction.
摘要:
A miniature piezoelectric transducer element is provided, comprising; (a) a cell element having a cavity; (b) a flexible piezoelectric layer attached to the cell member, the piezoelectric layer having an external surface and an internal surface, the piezoelectric layer featuring such dimensions so as to enable fluctuations thereof at its resonance frequency upon impinging of an external acoustic wave; and (c) a first electrode attached to the external surface and a second electrode attached to the internal surface of the piezoelectric layer. At least one of the electrodes may be specifically shaped so as to provide a maximal electrical output, wherein the electrical output may be current, voltage or power. A preferred shape of the electrodes includes two cores interconnected by a connecting member. The transducer element may function as a transmitter. When used as a transmitter, the electrodes are electrically connected to an electrical circuit including a switching element for modulating the reflected acoustic wave by controllably changing the mechanical impedance of the piezoelectric layer according to the frequency of an electrical message signal arriving from an electronic member, such as a sensor. Third and fourth electrodes may be attached to the piezoelectric layer and the electrical circuit, such that the switching element alternately connects the electrodes in parallel and anti-parallel electrical connections so as to controllably change the mechanical impedance of the piezoelectric layer.