Abstract:
In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
Abstract:
An optical assembly may include a platform disposed within a housing that has a limited space. The platform may be tilted by a first angle to fit a fiber array into the limited space of the housing. The optical assembly may also include a silicon photonics device mounted on the tilted platform. The silicon photonics device may include a grating coupler. The optical assembly may also include the fiber array directly coupled to the grating coupler on the silicon photonics device at a coupling position that deviates from a vertical coupling position by a second angle.
Abstract:
In an example, a coupled system includes a first waveguide, at least one second waveguide, and an interposer. The first waveguide has a silicon (Si) core having first refractive index n1 and a tapered end. The at least one second waveguide each has a silicon nitride (SiN) core having a second refractive index n2. The interposer includes a third waveguide having a third refractive index n3 and a coupler portion, where n1>n2>n3. The tapered end of the first waveguide is adiabatically coupled to a coupler portion of one of the at least one second waveguide. A tapered end of one of the at least one second waveguide is adiabatically coupled to the coupler portion of the third waveguide of the interposer. The third waveguide of the interposer has an optical mode size that is similar to the mode size of a standard single mode optical fiber.
Abstract:
An example embodiment includes a system for communicating an optical signal. The system includes an optical transmitter and an optical receiver. The optical transmitter includes one or more lasers configured to produce a light signal and a transmitter optical sub assembly (TOSA) receptacle. The TOSA receptacle optically couples the lasers to an optical fiber and launches a quasi-multimode optical signal (quasi-MM signal) that includes at least one lower order mode optical signal and at least one higher order mode optical signal onto the optical fiber. The optical receiver is connected to the optical fiber via a receiver optical sub assembly (ROSA) receptacle. The optical receiver is configured to receive the quasi-MM signal and to substantially block the at least one higher order mode optical signal.
Abstract:
Embodiments described herein include a multichannel transmitter optical subassembly that includes a plurality of lasers and a signal combiner. The plurality of lasers may be configured to emit light each with a different one of a plurality of light signals, each of the plurality of light signals having a wavelength within one of a plurality of wavelength bands. The signal combiner may be disposed relative to the plurality of lasers to receive the plurality of light signals. The signal combiner may include at least one surface having an optical coating that reflects at least one of the light signals of the plurality of light signals and transmits at least one of the light signals of the plurality of light signals.
Abstract:
In an example, a coupled system includes a first waveguide, at least one second waveguide, and an interposer. The first waveguide has a first refractive index n1 and a tapered end. The at least one second waveguide each has a second refractive index n2. The interposer includes a third waveguide having a third refractive index n3 and a coupler portion, where n1>n2>n3. The tapered end of the first waveguide is adiabatically coupled to a coupler portion of one of the at least one second waveguide. A tapered end of one of the at least one second waveguide is adiabatically coupled to the coupler portion of the third waveguide of the interposer. The coupled system is configured to adiabatically couple light between the first waveguide and the at least one second waveguide and between the at least one second waveguide and the third waveguide.
Abstract:
In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
Abstract:
An example embodiment includes a system for communicating an optical signal. The system includes an optical transmitter and an optical receiver. The optical transmitter includes one or more lasers configured to produce a light signal and a transmitter optical sub assembly (TOSA) receptacle. The TOSA receptacle optically couples the lasers to an optical fiber and launches a quasi-multimode optical signal (quasi-MM signal) that includes at least one lower order mode optical signal and at least one higher order mode optical signal onto the optical fiber. The optical receiver is connected to the optical fiber via a receiver optical sub assembly (ROSA) receptacle. The optical receiver is configured to receive the quasi-MM signal and to substantially block the at least one higher order mode optical signal.
Abstract:
In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
Abstract:
An optical assembly includes a first grating device configured to: receive a light beam that includes an optical signal with a particular wavelength from a fiber; and change a propagation direction of the optical signal according to the particular wavelength of the optical signal. The optical assembly also includes a second grating device configured to: receive the optical signal outputted from the first grating device; change the propagation direction of the optical signal according to the particular wavelength of the optical signal; and direct the optical signal onto a grating coupler. The first grating device and the second grating device are configured to satisfy a plurality of configuration constraints.