Abstract:
A first object of the present invention is to provide a method for producing a cyclic imide compound with high yield and high purity. A second object of the present invention is to provide a composition that can be used in the method for producing a cyclic imide compound with high yield and high purity. A third object of the present invention is to provide an intermediate compound that can be used in the method for producing a cyclic imide compound with high yield and high purity. The method for producing a cyclic imide compound according to the present invention includes reacting a compound represented by formula (1) below with at least one amine compound to obtain a compound represented by formula (2) below.
Abstract:
The present invention is to provide a photoelectric conversion element with an excellent sensitivity, an imaging element, an optical sensor, and a compound. The photoelectric conversion element of the present invention includes, in the following order, a conductive film, a photoelectric conversion film, and a transparent conductive film in which the photoelectric conversion film contains a compound represented by Formula (1) and a coloring agent.
Abstract:
An object of the present invention is to provide an n-type thermoelectric conversion layer, which has a high power factor and exhibits excellent performance stability, a thermoelectric conversion element including the n-type thermoelectric conversion layer, and a composition for forming an n-type thermoelectric conversion layer used in the n-type thermoelectric conversion layer. The n-type thermoelectric conversion layer of the present invention contains carbon nanotubes and an amine compound which is represented by General Formula (1) or (2) and has a ClogP value of 2.0 to 8.2.
Abstract:
An organic film transistor containing a compound, which is composed of n repeating units represented by Formula (1-1), (1-2), (101-1), or (101-2), in a semiconductor active layer is an organic film transistor using a compound having high carrier mobility and high solubility in an organic solvent. (Cy represents a benzene ring, a naphthalene ring, or an anthracene ring; each of R11 to R14 and R15 to R18 independently represents a hydrogen atom or a substituent; each of Ar1 to Ar4 independently represents a heteroarylene group or an arylene group; each of V1 and V2 represents a divalent linking group; m represents an integer of 0 to 6; when m is equal to or greater than 2, two or more groups represented by V1 may be the same as or different from each other; n is equal to or greater than 2; p represents an integer of 0 to 6; and when p is equal to or greater than 2, two or more groups represented by V2 may be the same as or different from each other.)
Abstract:
An organic semiconductor polymer having a structural unit represented by the following Formula (I), a composition for organic semiconductor material, a photovoltaic cell and a polymer. wherein X represents Si, S or O; R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aromatic heterocyclic group or an oxygen atom; p represents 0, 1 or 2; herein, the bond between X and R1 is such that when X is Si, the bond is a single bond, and when X is S, the bond is a double bond. Furthermore, when X is O, p represents 0.
Abstract:
An object of the present invention is to provide a photoelectric conversion element which has excellent manufacturing suitability and also has excellent photoelectric conversion efficiency, an imaging element, an optical sensor, and a compound. A photoelectric conversion element according to the present invention including in the following order, a conductive film, a photoelectric conversion film, and a transparent conductive film, in which the photoelectric conversion film contains a compound represented by Formula (1).
Abstract:
An object of the present invention is to provide a photoelectric conversion element in which variation in dark current is suppressed and which has excellent heat resistance. Another object of the present invention is to provide an imaging element, an optical sensor, and a compound. The photoelectric conversion element includes a conductive film, a photoelectric conversion film, and a transparent conductive film in this order, in which the photoelectric conversion film contains a compound represented by Formula (1).
Abstract:
A thermoelectric conversion module has a long support, a plurality of first metal layers formed on one surface of the support at intervals in a longitudinal direction of the support, a plurality of thermoelectric conversion layers formed at intervals in the longitudinal direction of the support, and a connection electrode for connecting the thermoelectric conversion layers adjacent in the longitudinal direction of the support, and a second metal layer formed on the other surface of the support, in which the first and the second metal layers have low rigidity portions that have rigidity lower than rigidity of other regions and extend in a width direction of the support, the low rigidity portions of the first and the second metal layers are formed at the same positions in the longitudinal direction, and the support is alternately bent into a mountain fold and a valley fold at the low rigidity portions.
Abstract:
An object of the present invention is to provide a semiconductor layer (p-type semiconductor layer) which demonstrate an excellent thermoelectric conversion performance and exhibits p-type characteristics. Another object of the present invention is to provide a thermoelectric conversion layer formed of the p-type semiconductor layer and a composition for forming a p-type semiconductor layer. Still another object of the present invention is to provide a thermoelectric conversion element, which has the thermoelectric conversion layer as a p-type thermoelectric conversion layer, and a thermoelectric conversion module.The p-type semiconductor layer of the embodiment of the present invention contains a nanocarbon material and at least one kind of onium salt selected from the group consisting of compounds represented by Formula (1) to Formula (4).
Abstract:
An object of the present invention is to provide a thermoelectric conversion element having excellent thermoelectric conversion performance and excellent high-temperature durability, a method for manufacturing the thermoelectric conversion element, a thermoelectric conversion module, and a method for manufacturing the thermoelectric conversion module. A thermoelectric conversion element of the present invention has a thermoelectric conversion layer containing an organic thermoelectric conversion material and a dopant, a pair of electrodes disposed at positions separated from each other, and a buffer layer which is disposed between the thermoelectric conversion layer and each of the electrodes and electrically connects the thermoelectric conversion layer and the electrodes to each other, in which the buffer layer contains the same material as the organic thermoelectric conversion material contained in the thermoelectric conversion layer, the buffer layer does not contain a dopant or contains a dopant, and in a case where the buffer layer contains a dopant, a ratio of the dopant contained in the buffer layer to the dopant contained in the thermoelectric conversion layer is equal to or lower than 0.1.