Abstract:
A wavelength conversion member, is provided with a wavelength conversion layer that includes quantum dots and is interposed between two barrier layers. The wavelength conversion member includes a light scattering layer that is provided between the barrier layers and the wavelength conversion layer, in which one of the barrier layers closest to the light scattering layer is formed of an inorganic component, the light scattering layer includes a binder, which is formed of either a compound having a hydrogen bonding functional group and a polymerizable group in a molecule or an organic metal coupling agent, and scattering particles having a diameter R of 0.2 to 5 μm, a thickness d of the light scattering layer is 0.2 to 4 μm, a thickness D of the wavelength conversion layer is 10 to 100 μm, and a ratio of d to D is 0.2% to 10%.
Abstract:
A polarizing plate includes: a polymer film; a polarizer; and a stress relaxation layer disposed between the polymer film and the polarizer, wherein a relationship of the following Expression (1) is satisfied, a thickness of the polymer film is equal to or greater than 10 μm, a distance(Ds) from the surface of the polarizing plate on the side of the polymer film to the interface between the polymer film and the stress relaxation layer is equal to or greater than 15 μm, a difference between the distance(Ds) and a thickness(C) of the polymer film is less than 15 μm, and a total thickness of the polymer film and the stress relaxation layer is equal to or less than 80 μm, 0.01
Abstract:
Provided is a wavelength conversion member including a wavelength conversion layer and a substrate, in which the wavelength conversion layer contains a binder and microparticles, and the microparticles contain a pyrromethene derivative and a matrix.
Abstract:
Provided is a wavelength conversion member including a wavelength conversion layer and a substrate, in which the wavelength conversion layer contains a pyrromethene derivative, a binder, and a light scattering particle.
Abstract:
Provided are a backlight unit and a light absorbing material-containing film which contains quantum dots or the like and is capable of suppressing in-plane luminance unevenness and chromaticity unevenness; and a backlight unit. The light absorbing material-containing film includes a light absorbing material-containing layer with a resin layer in which one or more concave portions discretely disposed are formed and a plurality of light absorption regions containing light absorbing bodies and disposed in the concave portions formed in the resin layer; a first substrate film laminated on one main surface of the light absorbing material-containing layer; and a second substrate film laminated on the other main surface of the light absorbing material-containing layer, where the light absorption region contains at least one phosphor that serves as the light absorbing body, and a binder.
Abstract:
An object of the present invention is to provide a backlight film that uses a wavelength conversion film used for a liquid crystal display or the like, has satisfactory durability, and is able to emit light without color unevenness. The object is achieved by including a wavelength conversion film having a wavelength conversion layer and a gas barrier film that sandwich the wavelength conversion layer; and at least one reflective layer provided on one main surface of the wavelength conversion film and causing a film thickness distribution of the reflective layer to be ±5% or less.
Abstract:
Provided are a phosphor-containing capable of suppressing deterioration of phosphors and can be manufactured with high efficiency and a backlight unit. Specifically, provided is a phosphor-containing film, including a first substrate film; and a phosphor-containing layer at which a plurality of regions containing phosphors, which, if exposed to oxygen, deteriorate by reacting with the oxygen, are discretely disposed on the first substrate film, and at which a resin layer having an impermeability to oxygen is disposed between the discretely disposed regions containing phosphors, in which a width S of the resin layer between the regions containing phosphors is 0.01≤S
Abstract:
Provided are a phosphor-containing capable of suppressing deterioration of phosphors and can be manufactured with high efficiency and a backlight unit. Specifically, provided is a phosphor-containing film 1, including a first substrate film 10; and a phosphor-containing layer 30 at which a plurality of regions 35 containing phosphors 31, which, if exposed to oxygen, deteriorate by reacting with the oxygen, are discretely disposed on the first substrate film 10, and at which a resin layer 38 having an impermeability to oxygen is disposed between the discretely disposed regions 35 containing phosphors 31, in which a width S of the resin layer 38 between the regions 35 containing phosphors 31 is 0.01≤S
Abstract:
Provided are a highly flat laminated film having an optically functional layer such as a quantum dot layer, in which a member such as a quantum dot performing an optical function can be prevented from deteriorating due to the permeation of oxygen or the like from an end face, and a method for manufacturing a laminated film. The laminated film includes a functional layer laminate having an optically functional layer and a gas barrier layer laminated on at least one main surface of the optically functional layer and an end face sealing layer formed by covering at least a portion of the end face of the functional layer laminate, and the end face sealing layer has an oxygen permeability of equal to or lower than 10 cc/(m2·day·atm).
Abstract:
Provided are a light absorbing material-containing film which contains quantum dots or the like and is capable of suppressing in-plane luminance unevenness and chromaticity unevenness; and a backlight unit. The light absorbing material-containing film includes a light absorbing material-containing layer that has a plurality of cylindrical or polygonal prism-shaped resin portions discretely disposed and a light absorption region contain light absorbing bodies and formed between the plurality of resin portions; a first substrate film that is laminated on one main surface of the light absorbing material-containing layer; and a second substrate film laminated on the other main surface of the light absorbing material-containing layer, where the light absorption region contains at least one phosphor that serves as the light absorbing body, and a binder.