Abstract:
Base stations (BSs) can remove inter-BS interference components from received uplink signals using downlink information communicated over a backhaul network. The downlink information is associated with downlink transmissions of neighboring base stations, and is used to remove the inter-BS interference in accordance with interference cancellation techniques, e.g., signal interference cancellation (SIC), etc. The downlink information includes information associated with downlink transmission of the interfering BSs, such as information bits (e.g., data), parity information, control information, modulation and coding scheme (MCS) parameters, forward error correction (FEC) parameters, and other information. Additionally, inter-BS interference can be suppressed using channel information of interference channels using interference suppression techniques, e.g., interference rejection combining (IRC), etc.
Abstract:
A method for configuring a first base station within a cluster in a communications system having a plurality of cluster includes optimizing an operating parameter of the first base station in accordance with first utility function results from a first utility function associated with the first base station and second utility function results from a second utility function associated with a second base station within the cluster, the first utility function results and the second utility function results according to multiple settings for the operating parameter of the first base station, a first initialized setting of the operating parameter for the second base station, and a second initialized setting of the operating parameter for an external base station outside the cluster. The method also includes sharing the optimized operating parameter with the external base station.
Abstract:
Forward Error Correction (FEC) techniques that generate independently decodable resource blocks are beneficial for Successive Interference Cancellation (SIC) demodulation. One FEC technique for generating independently decodable resource blocks includes mapping locally decodable FEC codeblocks into unique resource blocks such that substantially all of the bits of the FEC codeblock are carried within a single resource block. The locally decodable FEC codeblocks can be generated from different FEC encoding modules or from a common FEC encoding module. Another technique for generating independently decodable resource blocks includes encoding a stream of information bits into low-density parity-check (LDPC) codeblocks having high ratios of inward peering parity bits. These high ratios of inward peering parity bits allow substantial portions of each LDPC codeblock to be decoded independently from information carried by other LDPC codeblocks.
Abstract:
A method for operating a centralized controller in a communications network with a plurality of transmission points includes generating a plurality of overlays for the communications network in accordance with first mutual intercell interference levels for transmission point pairs in the communications network, wherein each overlay of the plurality of overlays comprises virtual transmission points, and selecting a first overlay of the plurality of overlays in accordance with a merit measure derived from first user equipments (UEs) operating in the communications network tentatively scheduled to each overlay of the plurality of overlays. The method also includes scheduling a first subset of the first UEs operating in the communications network during a first resource unit in accordance with the selected first overlay.
Abstract:
Embodiments are provided for assessing radio resource requirements using virtual bin virtualization. An embodiment method includes receiving a service request from a user equipment (UE) in a geographical bin. Resource requirements are then obtained, from a lookup table (LUT), for a serving radio node and neighbor radio nodes associated with the geographic bin of the UE. The LUT comprises a plurality of entries that map combinations of path losses of wireless links for the serving radio node and neighbor radio nodes to corresponding combinations of resource requirements. The entries of the path losses further include one or more service specific and network node parameters for the serving radio nodes and neighbor radio nodes, which are also mapped to the resource requirements. The obtained resource requirements are then assessed, including deciding whether to serve the UE according to the resource requirements and to resource availability.
Abstract:
Hierarchical compression includes the contemporaneous implementation of link-layer and higher-layer compression on data flowing over a link. Hierarchical compression can be achieved by configuring network nodes positioned at the link-layer to recognize higher-layer compression symbols embedded in incoming data streams, and to adapt link-layer compression to compensate for those higher-layer compression symbols. One technique for adapting link-layer compression is to perform data chunking in-between higher-layer compression symbols. This may reduce the likelihood that higher-layer compression symbols will interfere with the network nodes ability to identify redundant data chunks at the link-layer. Another technique for adapting link-layer compression is to define the HASH algorithm in such a way that the hash of a data string renders the same hash value as the hash of the higher layer compression symbol corresponding to the data string.
Abstract:
An embodiment user equipment has a list of predictive data that a user may request, and programming to receive prefetched data based on the list of predictive data at a reduced cost, wherein the reduced cost is lower than a network cost of downloading the data, and to store the prefetched data within the UE for future consumption. An embodiment base station has a list of predictive data a UE may request, a high priority queue for data requested by the UE, and a low priority queue with predictive data corresponding to the list of predictive data. The base station further includes programing to send the requested data and to send the predictive data.
Abstract:
Increased resource utilization efficiency can be improved by modeling path costs during admission and path-selection. Specifically, path costs for candidate paths are modeled based on load characteristics (e.g., current load, load variation, etc.) of links in the candidate paths. Path costs can represent any quantifiable cost or liability associated with transporting a service flow over the corresponding path. For example, path costs can correspond to a probability that at least one link in the path will experience an outage when transporting the service flow, a price charged by a network operator (NTO) for transporting the traffic flow over the candidate path, or a total network cost for transporting the flow over a candidate path. The candidate path having the lowest path cost is selected to transport a service flow.
Abstract:
Method and apparatus for decoding a transmitted signal by a receiver in a MIMO system into a first estimate component for estimating a first signal, a first interference component indicating interference resulting from a correlation relationship among a set of signals to be transmitted, and a first noise component. A base station generates the transmitted signal from the set of signals through a coding process, the coding process defining a correlation relationship amongst the set of signals. The correlation information about the correlation relationship is transmitted to the receiver directly or by a dedicated reference symbol. The decoding is performed by determining a linear receiver filter for the first signal in accordance with the correlation information, and de-correlating the first signal and interferences.
Abstract:
Historical decoding in accordance with signal interference cancellation (SIC) or joint processing may reduce the amount of data that is re-transported across a network following an unsuccessful attempt to decode a data transmission. In one example, historical decoding is performed in accordance with interference cancellation by communicating information related to interfering data (rather than information related to serving data) following a served receiver's unsuccessful attempt to decode an interference signal. The information related to the interfering data may be the information bits carried by the earlier interfering data transmission or parity information (e.g., forward error correction (FEC) bits, etc.) related to the earlier interfering data transmission.