Abstract:
System and method embodiments are provided for provisioning a quality of cellular user experience (QoE) or quality of service (QoS) specified device in a wireless local area network (LAN). The embodiments enable a QoE or QoS specified by a service agreement for a device to be maintained during periods when the device is transmitting data to and receiving data from the wireless LAN (e.g., a WiFi hotspot). In an embodiment, a method includes determining that at least one QoS-sensitive device is communicating with a wireless LAN access point (AP), reserving a contention free period (CFP) in a superframe for the at least one QoS-sensitive device to communicate with the AP, and allocating a contention period (CP) in the superframe for non-QoS-sensitive devices to communicate with the AP, wherein the non-QoS-sensitive devices are prohibited from transmitting during the CFP.
Abstract:
System and method embodiments are provided for proactive congestion detection in radio access networks. In an embodiment, a method in a network component for inhibiting the occurrence of congestion at radio nodes in a network includes determining, by the network component, a congestion alert threshold according to available resources in the network, wherein the congestion alert threshold comprises an incoming data rate threshold to an ingress server; and transmitting, by the network component, the congestion alert threshold to the ingress server, wherein the ingress server is configured to transmit a congestion alert to the network component when the incoming data rate exceeds the congestion alert threshold.
Abstract:
A system and method for agile wireless access network is provided. A method embodiment for agile radio access network management includes determining, by a network controller, capabilities and neighborhood relations of radio nodes in the radio access network. The network controller then configures a backhaul network infrastructure for the radio access network in accordance with the capabilities and the neighborhood relations of the radio nodes.
Abstract:
An embodiment method includes receiving service parameters for a service and locating logical network nodes for a service-specific data plane logical topology at respective physical network nodes among a plurality of physical network nodes according to the service parameters, a service-level topology, and a physical infrastructure of the plurality of physical network nodes. The method also includes defining connections among the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure, and defining respective connections for a plurality of UEs to at least one of the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure. The method further includes defining respective functionalities for the logical network nodes.
Abstract:
A system and method for compressing data is provided. An embodiment comprises building an adaptive global codebook for each scene in a sequence of video frames. Each frame in the sequence of frames is encoded based on a different encoding order that facilitates an efficient codebook update. Context models for the currently encoded macroblocks are based on temporally and spatially neighboring macroblocks and a global codebook.
Abstract:
Systems and methods are provided to improve data transmission efficiency over a network. The improvements are achieved by reducing the redundancy in the data representation. The data is divided into a plurality of data portions. The data portions are used to encode a plurality of compressed data portions, wherein the compressed data portions correspond to a subset of the data portions and comprise less redundant data than the subset of the data portions. The compressed data portions are also encoded in accordance with data in the remaining data portions. The compressed data portions are transmitted instead of the subset of the data portions with the remaining data portions according to a sequence of data portions. Each of the compressed data portions is transmitted upon receiving an acknowledgment (ACK) message that indicates successful transmission of a previous data portion or compressed data portion in the sequence of data portions.
Abstract:
Historical decoding in accordance with signal interference cancellation (SIC) or joint processing may reduce the amount of data that is re-transported across a network following an unsuccessful attempt to decode a data transmission. In one example, historical decoding is performed in accordance with interference cancellation by communicating information related to interfering data (rather than information related to serving data) following a served receiver's unsuccessful attempt to decode an interference signal. The information related to the interfering data may be the information bits carried by the earlier interfering data transmission or parity information (e.g., forward error correction (FEC) bits, etc.) related to the earlier interfering data transmission.
Abstract:
A network includes network components configured to perform a method for on-demand radio coordination. The method includes determining a congested radio node in a plurality of radio nodes in the network in response to congestion information received from a network device. The method includes generating a cluster of radio nodes associated with the congested radio node. The method also includes optimizing radio resources of the radio nodes in the cluster to produce cluster optimization results configured to alleviate congestion of the congested radio node. The method further includes transmitting the cluster optimization results to the radio nodes in the cluster to alleviate the congestion.
Abstract:
System and method embodiments are provided for provisioning a quality of cellular user experience (QoE) or quality of service (QoS) specified device in a wireless local area network (LAN). The embodiments enable a QoE or QoS specified by a service agreement for a device to be maintained during periods when the device is transmitting data to and receiving data from the wireless LAN (e.g., a WiFi hotspot). In an embodiment, a method includes determining that at least one QoS-sensitive device is communicating with a wireless LAN access point (AP), reserving a contention free period (CFP) in a superframe for the at least one QoS-sensitive device to communicate with the AP, and allocating a contention period (CP) in the superframe for non-QoS-sensitive devices to communicate with the AP, wherein the non-QoS-sensitive devices are prohibited from transmitting during the CFP.