Abstract:
In an embodiment, an apparatus for reducing the mechanical load on the electrical terminals of a capacitor includes a plate having a planar body and one or more deflectable tabs connected to the planar body, one or more capacitors respectively mounted to the plate via the one or more deflectable tabs, and a busbar electrically connected to the one or more capacitors such that the one or more capacitors are arranged intermediate the plate and the busbar. The deflectable tabs are configured to support the capacitors, and to move towards and away from the planar body for accommodating size variances in the capacitors relative to a fixed spacing between the busbar and an enclosure.
Abstract:
A system includes a front plate, first and second side plates extending from the front plate, a bridge heat sink coupled to and extending from the front plate between the side plates, and a heat pipe coupled to the front plate. The front plate defines a slot therethrough between the front and back sides. The first side plate includes a fin bank mounted on an outer side thereof. The bridge heat sink defines a fluid channel that is fluidly connected to the slot of the front plate. The fluid channel is configured to receive a first cooling fluid therein to dissipate heat from electronics packages that engage the bridge heat sink. The heat pipe extends to and at least partially through the fin bank. The heat pipe contains a second cooling fluid therein that transfers heat absorbed from the front plate to the fin bank for dissipating heat.
Abstract:
A system includes a front plate, a manifold cover, and bridge heat sinks. The manifold cover is secured to the front plate to define a fluid distribution chamber along a front side of the front plate. The manifold cover defines a port opening through which a cooling fluid is received from outside of the manifold cover. The bridge heat sinks extend rearward from a back side of the front plate. The bridge heat sinks define fluid channels that are fluidly connected with the fluid distribution chamber through corresponding slots in the front plate. The fluid distribution chamber is configured to distribute the cooling fluid received from outside of the manifold cover through the fluid channels of the bridge heat sinks in order to cool one or more electronics packages disposed along the bridge heat sinks without the cooling fluid engaging the one or more electronics packages.
Abstract:
A system includes a front plate, first and second side plates extending from the front plate, a bridge heat sink coupled to and extending from the front plate between the side plates, and a heat pipe coupled to the front plate. The front plate defines a slot therethrough between the front and back sides. The first side plate includes a fin bank mounted on an outer side thereof. The bridge heat sink defines a fluid channel that is fluidly connected to the slot of the front plate. The fluid channel is configured to receive a first cooling fluid therein to dissipate heat from electronics packages that engage the bridge heat sink. The heat pipe extends to and at least partially through the fin bank. The heat pipe contains a second cooling fluid therein that transfers heat absorbed from the front plate to the fin bank for dissipating heat.