Abstract:
A method of preparing a catalyst composition suitable for removing sulfur from a catalytic reduction system and the catalyst composition prepared by the method are provided. The method of preparation of a catalyst composition, comprises: combining a metal oxide precursor, a catalyst metal precursor and an alkali metal precursor in the presence of a templating agent; hydrolyzing and condensing to form an intermediate product that comprises metal oxide, alkali metal oxide, and catalyst metal; and calcining to form a templated amorphous metal oxide substrate having a plurality of pores wherein the alkali metal oxide and catalyst metal are dispersed in an intermixed form in the metal oxide substrate.
Abstract:
A composition includes a templated metal oxide substrate having a plurality of pores and a catalyst material includes silver. The composition under H2 at 30 degrees Celsius, the composition at a wavelength that is in a range of from about 350 nm to about 500 nm has a VIS-UV absorbance intensity that is at least 20 percent less than a standard silver alumina catalyst (Ag STD). The standard alumina is Norton alumina, and which has the same amount of silver by weight.
Abstract:
An efficient and cost-effective process of carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells is provided. The process comprises recovering a hydrocarbon enriched stream of condensed carbon dioxide from and enhanced oil recovery (EOR) well or a fracturing well; adding to said stream one or more thickeners; and directing the thickened stream to the EOR well or fracturing well for recycled usage in EOR.
Abstract:
A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
Abstract:
A composition includes a templated metal oxide substrate having a plurality of pores and a catalyst material includes silver. The composition under H2 at 30 degrees Celsius, the composition at a wavelength that is in a range of from about 350 nm to about 500 nm has a VIS-UV absorbance intensity that is at least 20 percent less than a standard silver alumina catalyst (Ag STD). The standard alumina is Norton alumina, and which has the same amount of silver by weight.
Abstract:
A method for separating carbon dioxide (CO2) from a gas stream is disclosed, in which the gas stream is reacted with a lean aminosilicone solvent in an absorber, resulting in a rich aminosilicone solvent that is then treated in a desorber to release the CO2 and regenerate lean aminosilicone solvent in a desorption reaction. The regenerated solvent is directed into a steam-producing, indirect heat exchanger that is configured to supply steam to the desorber at a temperature high enough to augment the desorption reaction. Also, selected amounts of make-up water are added to the rich aminosilicone solvent at one or more process locations between the absorber and the desorber, to lower the viscosity of the solvent and to lower the temperature required for the desorption reaction.
Abstract:
Systems and methods for separating carbon dioxide (CO2) from a gas stream are provided. The system includes a reaction chamber 20, a pressurization unit 30, and a desorption unit 40. The reaction chamber 20 is configured to receive a liquid sorbent stream 14 and the gas stream 12, to react at least a portion of CO2 in the gas stream 12 with the liquid sorbent and form an adduct stream 22. The pressurization unit 30 is configured to contact the adduct stream 22 with a pressurized CO2 stream 24 and form a pressurized adduct stream 32 that includes a liquid CO2 adduct. The desorption unit 40 is in fluid communication with the pressurization unit 30, and is configured to decompose at least a portion of the liquid CO2 adduct to form a CO2 stream 42 and a regenerated liquid sorbent stream 44.
Abstract:
Systems and methods for separating carbon dioxide (CO2) from a gas stream are provided. The system includes a reaction chamber 20, a pressurization unit 30, and a desorption unit 40. The reaction chamber 20 is configured to receive a liquid sorbent stream 14 and the gas stream 12, to react at least a portion of CO2 in the gas stream 12 with the liquid sorbent and form an adduct stream 22. The pressurization unit 30 is configured to contact the adduct stream 22 with a pressurized CO2 stream 24 and form a pressurized adduct stream 32 that includes a liquid CO2 adduct. The desorption unit 40 is in fluid communication with the pressurization unit 30, and is configured to decompose at least a portion of the liquid CO2 adduct to form a CO2 stream 42 and a regenerated liquid sorbent stream 44.
Abstract:
Provided herein are methods for efficient and cost effective carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells. Also provided are functionalized polymers which can be used as thickeners in the methods for efficient and cost effective carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells.
Abstract:
A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.