Abstract:
A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.
Abstract:
A system is provided that includes a detection circuit having a first and second sensor. The first sensor is configured to measure a rotational speed of a first wheel. The second sensor is coupled to a vehicle chassis and configured to measure a position over time of the vehicle chassis. The system further includes a controller circuit configured to determine a shock frequency based on the position of the vehicle chassis. The controller circuit is further configured to determine a condition (e.g., an anomalous condition) of the first wheel based on the shock frequency and the rotational speed, and may be further configured for vehicle control based on the determined condition.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A method and system for examining velocity differences in a vehicle speed of a vehicle and the angular speed of the axles and/or wheels of the vehicle system traveling along a route to determine if the route is damaged and/or to identify the location of the potentially damaged section of the route. The differences may represent wheel creeps of the vehicle system.
Abstract:
An air brake monitoring system includes an air brake control module and an air brake monitoring module. The air brake control module is configured to control variation of an amount of pressure in a brake pipe of the vehicle to actuate brakes of a braking system of the vehicle. The air brake monitoring module is configured to obtain a reference replenishment volume corresponding to a volume of air used to recharge the braking system after application of the brakes of the braking system when the braking system when a first amount of brakes are operational, to obtain an actual replenishment volume corresponding to an actual volume of air used to recharge the braking system of the vehicle after a braking activity performed by the vehicle, and to generate a signal based on a comparison of the actual replenishment volume to the reference replenishment volume.
Abstract:
A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system. When the first wireless communication device is operating in the onboard communication mode, the device is configured to communicate local data signals between the propulsion-generating vehicles of the vehicle system.
Abstract:
A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system. When the first wireless communication device is operating in the onboard communication mode, the device is configured to communicate local data signals between the propulsion-generating vehicles of the vehicle system.
Abstract:
Systems are provided to determine a location of an electrical fault in an electrical system of a vehicle. A test apparatus can include a control unit and a plurality of scan circuits. The control unit is configured to electrically couple the plurality of scan circuits to the electrical system and trigger the plurality of scan circuits to pass electrical signals to the electrical system. Each scan circuit is configured to detect a presence of an electrical fault in the electrical system based on an electrical signal passed. Each scan circuit provides information indicative of a location of the electrical fault in the electrical system, when detected, to the control unit.
Abstract:
A system is provided that includes a detection circuit having a first and second sensor. The first sensor is configured to measure a rotational speed of a first wheel. The second sensor is coupled to a vehicle chassis and configured to measure a position over time of the vehicle chassis. The system further includes a controller circuit configured to determine a shock frequency based on the position of the vehicle chassis. The controller circuit is further configured to determine a condition (e.g., an anomalous condition) of the first wheel based on the shock frequency and the rotational speed, and may be further configured for vehicle control based on the determined condition.