Abstract:
A system includes a SiC semiconductor power device; a power supply board that is configured to provide power to a first gate driver board via a connector; the first gate driver board that is coupled and configured to provide current to the SiC semiconductor power device, wherein the first gate driver board is coupled to the power supply board via the connector, and wherein the first gate driver board is separated from the power supply board; and an interconnect board that is coupled to the first gate driver board, wherein the interconnect board is configured to couple the first gate driver board a second gate driver board.
Abstract:
A power conversion system may include a plurality of power devices and a sensor operably coupled to at least one of the plurality of power devices and configured to detect a voltage, current, or electromagnetic signature signal associated with the plurality of power devices. The power converter may also include circuitry operably coupled to the plurality of power devices and the sensor. The circuitry may send a respective gate signal to each respective power device of the plurality of power devices, such that each respective gate signal is delayed by a respective compensation delay that is determined for the respective power device based on a respective time delay of the respective power device and a maximum time delay of the plurality of power devices.
Abstract:
A portable x-ray system includes a light weight x-ray head including an x-ray tube and a high voltage (HV) tank, wherein the HV tank comprises a compact voltage multiplier configured to receive a low voltage signal and generate a high voltage signal based on the received low voltage signal. Also, the portable x-ray system includes a carrying case comprising low voltage power electronics coupled to the light weight x-ray head through a low voltage cable, and configured to send the low voltage signal to the light weight x-ray head. In addition, the low voltage power electronics is distributed in a predefined space in the carrying case in such a way that a weight of the light weight x-ray head is counter weighed by a weight of the low voltage power electronics to stabilize the portable x-ray system when the light weight x-ray head is rotated in one or more directions.
Abstract:
A power converter is provided. The power converter includes a converter leg including switches for converting power. The power converter also includes a controller for switching the switches using a pulse width modulation technique. The power converter further includes an interface inductor coupled to the converter leg for avoiding a reverse recovery of current in the switches during operation.
Abstract:
An apparatus and method for providing a predefined x-ray field is presented. Briefly in accordance with one aspect of the present disclosure, the apparatus includes a cathode unit configured to emit electrons within a vacuum chamber. The apparatus further includes an anode unit configured to generate x-rays when the emitted electrons impinge on a target surface of the anode unit. Also, the apparatus includes a collimating unit comprising a primary set of blades disposed in the vacuum chamber at a first distance from the anode unit for collimating the generated x-rays to provide the predefined x-ray field at a detector.
Abstract:
This disclosure regards a magnetic resonance imaging system including a scanner, and gradient drivers. The scanner is to be implemented within a scan room that is shielded from electromagnetic interference. Gradient coils are designed to create a linear gradient in the magnetic field generated in the scanner by a primary magnet. These coils are energized by gradient drivers. The gradient drivers use transformers and other electrical devices in a switching stage configured to generate pulse-width-modulated power. The transformers may have non-magnetic cores to facilitate implementing the gradient drivers within the scan room. The gradient drivers also use a filtering stage which uses inductors and other electrical devices to smooth the pulse-width-modulated power. The inductors within the filters may have non-magnetic cores to facilitate implementing the gradient driver within the scan room. Additionally, an inductor with a hollow wire may be used to circulate fluid to facilitate cooling the gradient driver.
Abstract:
The present disclosure presents techniques to facilitate improving operation of an electrical system, which includes a bus structure that cascades multiple electrical devices. The bus structure includes a first outer conductive layer implemented as a positive layer; a second outer conductive layer implemented as a negative layer; a first intermediate conductive layer neighboring the first outer conductive layer; a second intermediate conductive layer neighboring the second outer conductive layer; and a third intermediate conductive layer neighboring the second intermediate conductive layer, in which the third intermediate conductive layer is implemented as an inter-device layer that facilitates electrically coupling at least two of the electrical devices in series. The first intermediate conductive layer is implemented as a negative layer and the second intermediate conductive layer is implemented as a positive layer to facilitate reducing stray inductance and/or increasing stray capacitance introduced in the electrical system during operation.
Abstract:
This disclosure regards a magnetic resonance imaging system including a scanner, and gradient drivers. The scanner is to be implemented within a scan room that is shielded from electromagnetic interference. Gradient coils are designed to create a linear gradient in the magnetic field generated in the scanner by a primary magnet. These coils are energized by gradient drivers. The gradient drivers use transformers and other electrical devices in a switching stage configured to generate pulse-width-modulated power. The transformers may have non-magnetic cores to facilitate implementing the gradient drivers within the scan room. The gradient drivers also use a filtering stage which uses inductors and other electrical devices to smooth the pulse-width-modulated power. The inductors within the filters may have non-magnetic cores to facilitate implementing the gradient driver within the scan room. Additionally, an inductor with a hollow wire may be used to circulate fluid to facilitate cooling the gradient driver.
Abstract:
A power module includes an input bus, a switching device, and an output bus. The input bus includes a first coating of a high permeability magnetic conductive material and is configured to receive input direct current (DC) electrical power from an electrical power source. The switching device is electrically coupled to the first input bus, and is configured to selectively connect and disconnect to facilitate converting the input DC electrical power into output alternating current (AC) electrical power. The output bus includes a second coating of the high permeability magnetic conductive material, and is electrically coupled to the first switching device. The output bus is configured to supply the output AC electrical power to an electrical load.
Abstract:
A system and method for conditioning DC power received from hybrid DC power sources is disclosed. A power conversion circuit is coupled to a respective DC power source to selectively condition the output power generated thereby to a DC bus voltage. The power conversion circuit includes a switch arrangement and capacitors arranged to provide a charge balancing in the power conversion circuit. A controller in operable communication with the switch arrangement receives inputs on a DC bus voltage and at least one parameter related to operation of the DC power source, and determines an adjustable voltage to be output from the conversion circuit to the DC bus based on the received inputs. The controller then selectively controls operation of the switch arrangement in order to generate the determined adjustable voltage.