Abstract:
An article and method of cooling an article are provided. The article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, and at least one cooling feature positioned within the inner region. At least one of the inner surface of the body portion and the at least one cooling feature has a surface roughness of between about 100 microinches (about 2.54 microns) and about 3,000 microinches (about 76.2 microns). The method of forming an article includes manufacturing a body portion by an additive manufacturing technique, and manufacturing at least one cooling feature by the additive manufacturing technique. The additive manufacturing integrally forms a surface roughness of between about 100 microinches (about 2.54 microns) and about 3,000 microinches (about 76.2 microns) on at least one of an inner surface of the body portion and the at least one cooling feature.
Abstract:
An article and a component are provided. The article includes a base portion arranged and disposed to be positioned within a component, and an arrangement of apertures formed in the base portion, each of the apertures extending through the base portion. The arrangement of apertures is arranged and disposed to provide shadowless cooling of an inner surface of the component. The component includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, and an article positioned within the inner region, the article comprising a base portion and an arrangement of apertures formed in the base portion, each of the apertures extending through the base portion. The arrangement of apertures is arranged and disposed to provide shadowless cooling of the inner surface of the body portion. Also provided is a method of cooling a component including an article positioned therein.
Abstract:
An article is disclosed including a manifold, an article wall having at least one external aperture, and a post-impingement cavity disposed between the manifold and the article wall. The manifold includes an impingement plate defining a plenum having a plenum surface, and at least one impingement aperture. The at least one impingement aperture interfaces with the plenum at an intake aperture having a flow modification structure, which, together with the at least one impingement aperture, defines an exhaust aperture. The manifold exhausts a fluid from the plenum into the intake aperture, through the at least one impingement aperture, out the exhaust aperture, into the post-impingement cavity, and through the at least one external aperture.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of axial cooling channels in the trailing edge portion of the airfoil are arranged to permit axial flow of a cooling fluid from an interior of the turbine component at the trailing edge portion to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a trailing edge portion with axial cooling channels. The axial cooling channels are arranged to permit axial flow of a cooling fluid from an interior to an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. Radial cooling channels in the trailing edge portion of the airfoil permit radial flow of a cooling fluid through the trailing edge portion. Each radial cooling channel has a first end at a lower surface at a root edge of the trailing edge portion or at an upper surface at a tip edge of the trailing edge portion and a second end opposite the first end at the lower surface or the upper surface. A method of making a turbine component and a method of cooling a turbine component are also disclosed.
Abstract:
Turbine components are disclosed including a component wall defining a constrained portion, a manifold having an impingement wall, and a post-impingement cavity disposed between the manifold and the component wall. The impingement wall includes a wall thickness and defines a plenum and a tapered portion. The tapered portion tapers toward the constrained portion and includes a plurality of impingement apertures and a wall inflection. The wall inflection is disposed proximal to the constrained portion, and the tapered portion is integrally formed as a single, continuous object. The wall inflection may include an inflection radius of less than about 3 times the wall thickness of the impingement wall, or the tapered portion may include a consolidated portion with the impingement wall extending across the plenum. A method for forming the turbine component is also disclosed, including forming the tapered portion as a single, continuous tapered portion by an additive manufacturing technique.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of nested cooling channels in the trailing edge portion of the airfoil permit passage of a cooling fluid from an interior of the turbine component to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a leading edge, a trailing edge portion extending to a trailing edge, and a plurality of nested cooling channels in the trailing edge portion. Each nested cooling channel fluidly connects an interior of the turbine component with an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of axial cooling channels in the trailing edge portion of the airfoil are arranged to permit axial flow of a cooling fluid from an interior of the turbine component at the trailing edge portion to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a trailing edge portion with axial cooling channels. The axial cooling channels are arranged to permit axial flow of a cooling fluid from an interior to an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
Abstract:
An article and method of cooling an article are provided. The article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, at least one up-pass cavity formed within the inner region and extending from a base of the body portion towards a tip of the body portion, and a cap formed in each up-pass cavity, each cap being adjacent to the tip of the body portion, having at least one aperture formed therein, and being arranged and disposed to direct fluid towards the tip of the body potion. The method includes directing a fluid into the first up-pass cavity, passing the fluid through at least one aperture in the cap, contacting the tip of the article with the fluid, receiving the post-impingement fluid within a down-pass cavity, and directing the post-impingement fluid through the down-pass cavity.