Abstract:
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit over the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.
Abstract:
An article includes a substrate and a structure including direct metal laser melted material of predetermined thickness attached to the substrate, the structure formed by providing and depositing a metal alloy powder to form an initial layer having a preselected thickness and shape including at least one aperture, melting the metal alloy powder with a focused energy source, transforming the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder over the sheet of metal alloy, the additional preselected shape including an aperture corresponding to the aperture in the initial layer, and melting each additional layer of the metal alloy powder with the focused energy source, increasing the thickness of the sheet and forming at least one aperture having a predetermined profile, the article further including a passageway through the structure including the aperture and a corresponding metering hole.
Abstract:
An article and method of forming an article are provided. The article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, and at least one cooling feature positioned within the inner region. The body portion includes a first material and the at least one cooling feature includes a second material, the second material having a higher thermal conductivity than the first material. The method includes manufacturing a body portion by an additive manufacturing technique and manufacturing at least one cooling feature by the additive manufacturing technique. The body portion includes a first material and the at least one cooling feature includes a second material, the second material having a higher thermal conductivity than the first material.
Abstract:
A cooling article and method of forming a cooling article are provided. The cooling article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a cooling feature extending away from an outer surface of the body portion. The cooling feature disturbs fluid flow in the outer region. The method of forming a cooling article includes forming a body portion defining an inner region and an outer region, forming an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and forming a cooling feature extending away from an outer surface of the body portion. The cooling article is arranged and disposed for insertion within a hot gas path component of a turbine engine.
Abstract:
A brazing method is disclosed. The brazing method includes providing a substrate, providing at least one groove in the substrate, providing a support member, positioning the support member over the at least one groove in the substrate, providing a braze material, applying the braze material over the support member to form an assembly, and heating the assembly to braze the braze material to the substrate. Another brazing method includes providing a preform, providing a wire mesh, pressing the wire mesh into the preform, heating the preform to form a braze material including the wire mesh, providing a substrate, providing at least one groove in the substrate, applying the braze material over the at least one groove in the substrate, then brazing the braze material to the substrate.
Abstract:
A three-dimensional printing process, a swirling device, and a thermal management process are disclosed. The three-dimensional printing process includes distributing a material to a selected region, selectively laser melting the material, and forming a swirling device from the material. The swirling device is printed by selective laser melting. The thermal management process includes providing an article having a swirling device printed by selective laser melting, and cooling a portion of the article by transporting air through the swirling device.
Abstract:
An airfoil including a leading edge, a trailing edge, a pressure side, a suction side, and an internal impingement cavity. An impingement insert is located within the impingement cavity. The impingement insert includes at least one impingement cooling hole spaced along a first face of the impingement insert and at least one impingement fin, having a base and a tip opposite the base, spaced along the first face of the impingement insert. The at least one impingement fin is spaced apart from the at least one impingement cooling hole.
Abstract:
An article includes a substrate and a structure of additive manufacturing material of predetermined thickness attached to the substrate, the structure of additive manufacturing material formed by providing a metal alloy powder, forming an initial layer having a preselected thickness and a preselected shape including at least one aperture, with the metal alloy powder, sequentially forming an additional layer with the metal alloy powder over the initial layer, each of additional layers having an additional preselected thickness and an additional preselected shape including an aperture corresponding to the aperture in the initial layer, and joining each of the additional layers to the initial layer or any previously joined additional layers, forming a structure having a predetermined thickness and shape, and an aperture having a predetermined profile. The article includes a passageway through the structure including the aperture and a corresponding metering hole.
Abstract:
Turbine components are disclosed including a component wall defining a constrained portion, a manifold having an impingement wall, and a post-impingement cavity disposed between the manifold and the component wall. The impingement wall includes a wall thickness and defines a plenum and a tapered portion. The tapered portion tapers toward the constrained portion and includes a plurality of impingement apertures and a wall inflection. The wall inflection is disposed proximal to the constrained portion, and the tapered portion is integrally formed as a single, continuous object. The wall inflection may include an inflection radius of less than about 3 times the wall thickness of the impingement wall, or the tapered portion may include a consolidated portion with the impingement wall extending across the plenum. A method for forming the turbine component is also disclosed, including forming the tapered portion as a single, continuous tapered portion by an additive manufacturing technique.
Abstract:
A process of producing a hot gas path turbine component. The process includes forming a void in a first ceramic matrix composite ply and forming a void in a second ceramic matrix composite ply. The second ceramic matrix composite ply is positioned on the first ceramic matrix composite ply such that the positioning aligns the voids to at least partially define a cavity in the component. A third ceramic matrix composite ply is positioned on the first ceramic matrix composite ply and the first ceramic matrix composite ply, the second ceramic matrix composite ply and the third ceramic matrix composite ply are densified to form a densified body. The cavity is present in the densified body. A ceramic matrix composite having cavities therein is also disclosed.