Abstract:
Methods for fabricating electrodes include coating a current collector with a slurry to form a coated current collector. The slurry includes a dry fraction, including silicon particles, polymeric binders, and one or more types of naturally occurring carbonaceous filaments, and one or more solvents. The coated current collector is heat treated to produce the electrode having a layer of silicon-based host material. The one or more naturally occurring carbonaceous filaments can include animal fibers, chitin, alginate, cellulose, keratin, and chitosan, and can have an average length of 1 μm to 50 μm and an average diameter of 1 nm to 500 nm. The dry fraction can include 5 wt. % to 95 wt. % silicon particles, 0.1 wt. % to 15 wt. % polymeric binders, and 1 wt. % to 20 wt. % naturally occurring carbonaceous filaments. The method can include assembling a battery cell by disposing the electrode and a positive electrode in electrolyte.
Abstract:
A lithium-ion conducting, solid electrolyte is deposited on a thin, flexible, porous alumina membrane which is placed between co-extensive facing side surfaces of a porous, lithium-accepting, negative electrode and a positive electrode formed of a porous layer of particles of a compound of lithium, a transition metal element, and optionally, another metal element. A liquid electrolyte formed, for example, of LiPF6 dissolved in an organic solvent, infiltrates the electrode materials of the two porous electrodes for transport of lithium ions during cell operation. But the solid electrolyte permits the passage of only lithium ions, and the negative electrode is protected from damage by transition metal ions or other chemical species produced in the positive electrode of the lithium-ion cell.
Abstract:
An electrode material for an electrochemical cell is provided. The electrode includes a porous hydrophilic substrate, an electroactive material, and a binder. The porous hydrophilic substrate includes a plurality of voids and may be formed from cellulose or cellulosic derivative material. The electroactive material is dispersed in at least a portion of the voids of the hydrophilic substrate. In other aspects, another electrode material for an electrochemical cell is provided. The electrode includes a porous hydrophilic substrate, an electroactive material, an electrically conductive particle, and a binder. The porous hydrophilic substrate includes a plurality of voids and may be formed from cellulose or cellulosic derivative material. The electroactive material and the electrically conductive particle are dispersed in at least a portion of the voids of the hydrophilic substrate. In still other aspects, the porous hydrophilic substrate comprises a coating that is electrically conductive.
Abstract:
A lithium-ion conducting, solid electrolyte is deposited on a thin, flexible, porous alumina membrane which is placed between co-extensive facing side surfaces of a porous, lithium-accepting, negative electrode and a positive electrode formed of a porous layer of particles of a compound of lithium, a transition metal element, and optionally, another metal element. A liquid electrolyte formed, for example, of LiPF6 dissolved in an organic solvent, infiltrates the electrode materials of the two porous electrodes for transport of lithium ions during cell operation. But the solid electrolyte permits the passage of only lithium ions, and the negative electrode is protected from damage by transition metal ions or other chemical species produced in the positive electrode of the lithium-ion cell.
Abstract:
An electrolyte composition for batteries is provided. The electrolyte composition includes a solvent blend that includes cyclic carbonate and linear carbonate. The electrolyte composition further includes a lithium-based salt, fluoroethylene carbonate, vinylene carbonate, and a metal-based salt additive. The metal-based salt additive includes counterions of a metal and trifluoromethanesulfonimide. The metal is chosen from magnesium (Mg), manganese (Mn), aluminum (Al), iron (Fe), nickel (Ni), or combinations thereof.
Abstract:
An electrolyte composition for batteries is provided. The electrolyte composition includes ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, vinyl ethylene carbonate, vinyl carbonate, 1,3-propane sultone, ethylene sulfate, and lithium difluorophosphate. The ethylene carbonate, the diethyl carbonate, and the ethyl methyl carbonate are each present in the electrolyte composition in an amount from 10 parts by weight to 50 parts by weight based on 100 parts by weight of the electrolyte composition. The vinyl ethylene carbonate is present in an amount up to 0.5 parts by weight based on 100 parts by weight of the electrolyte composition. The vinyl carbonate is present in an amount up to 1.0 parts by weight based on 100 parts by weight of the electrolyte composition. The 1,3-propane sultone is present in an amount up to 1.5 parts by weight based on 100 parts by weight of the electrolyte composition.
Abstract:
A mirror assembly includes a mirror housing and a mirror. The mirror is supported by the mirror housing. The mirror has an outer reflective surface. The mirror is bendable between a flat shape and a fisheye shape. The mirror assembly further includes an actuator assembly coupled to the mirror. Upon actuation, the actuator assembly is configured to bend the mirror between the flat shape and the fisheye shape to adjust a field of view of the mirror.
Abstract:
A system and method for determining the presence of a hidden hazard may include identification of an operational scene for a host vehicle, and identification of an operational situation for the host vehicle. Information from a plurality of proximity sensors is collected and classified. A plurality of hidden hazard presence probabilities corresponding to the information from each of the plurality of proximity sensors, the operational scene, the operational situation, and at least one of a comparative process and a dynamic neural network process are estimated. A fusion process may be performed upon the plurality of hidden hazard presence probabilities to determine the presence of a hidden hazard.
Abstract:
A process for local traffic approximation through analysis of cloud data is provided. The process includes, within a computerized traffic flow estimation controller of a host vehicle, operating programming to monitor a planned navigational route of the host vehicle, identify along the planned navigational route a road section including cross-traffic, monitor cloud data related to a mobile cellular device, analyze the cloud data to identify traffic posing a hazardous condition to the host vehicle within the road section, and generate a vehicle alert to a driver of the host vehicle based upon the identified traffic.
Abstract:
A mirror assembly includes a mirror housing and a mirror. The mirror is supported by the mirror housing. The mirror has an outer reflective surface. The mirror is bendable between a flat shape and a fisheye shape. The mirror assembly further includes an actuator assembly coupled to the mirror. Upon actuation, the actuator assembly is configured to bend the mirror between the flat shape and the fisheye shape to adjust a field of view of the mirror.