Abstract:
A transmission includes a housing, an input member connectable to an engine output member, and a launch clutch assembly connected to the input member. A first and a second countershaft are rotatably supported within the transmission housing. A plurality of co-planar gear sets are connected to the input member and the first and second countershafts. A plurality of torque transmitting mechanisms are provided for coupling various components of the co-planar gear sets to the input member and countershafts. The selective engagement of the launch clutch assembly and the torque transmitting mechanisms establishes at least one of six forward speed ratios and a reverse speed ratio.
Abstract:
A method of testing a braking system for an automotive vehicle that includes a master cylinder, a brake booster, a plurality of brake assemblies, a plurality of inlet valves, each inlet valve adapted to selectively allow brake fluid to flow into one of the plurality of brake assemblies and a plurality of outlet valves, each outlet valve adapted to selectively allow brake fluid to flow from one of the brake assemblies to a brake fluid reservoir, the method includes testing a first one of the plurality of inlet valves, testing a first one of the plurality of outlet valves, and sending diagnostic information to a controller within the automotive vehicle.
Abstract:
A fluid circuit includes a device, a cooler, and a valve. The valve includes a housing, a sealing member, a biasing device, and an actuator. The sealing member moves inside the housing between a first position and a second position. The actuator includes a smart material that is activated when the temperature of a fluid inside the housing exhibiting at least a first temperature, causing the sealing member to move to the second position. The smart material is deactivated when the fluid is a sufficient number of degrees less than the first temperature, causing the sealing member to move to the first position. The fluid flows from the housing to the device and then to the housing when the sealing member is in the first position. The fluid flows from the housing to the cooler and then to the device when the sealing member is in the second position.
Abstract:
A method of controlling a Micro-Electro-Mechanical System (MEMS) valve includes defining a desired pressure output for the MEMS valve. The desired pressure output is related to a control reference value. The control reference value relates an output pressure of the MEMS valve to a measurable characteristic of the MEMS valve. The measurable characteristic may include a resistance, an electrical power, or an electrical current of the MEMS valve. The control reference value is converted to an initial Pulse Width Modulated (PWM) signal that is applied to the MEMS valve. The initial PWM signal may be adjusted to define an adjusted PWM signal based upon a difference between an actual value of the measurable characteristic at the initial PWM signal and the control reference value, until the actual value of the measurable characteristic at the adjusted PWM signal is within a pre-defined range of the control reference value.
Abstract:
An apparatus for ratio control of a continuously variable transmission includes a driver commanded ratio unit outputting a signal defining a commanded ratio. A clamp control portion is in communication with the driver commanded ratio unit. The clamp control portion includes: a ratio limits and override ring selecting a ratio matching the commanded ratio from an executable functions having stored ratio code data; a screening monitor continuously receiving output from the executable functions and using an input from a vehicle speed signal to compute minimum and maximum ratio limits for the ratio selected by the ratio limits and override ring; and a ratio control execution ring in communication with the screening monitor. The ratio control execution ring calculates a range of pressures allowed for operation of both primary and secondary pulleys of the continuously variable transmission.
Abstract:
A switching valve control module selectively actuates a switching valve of a continuously variable transmission (CVT) either: (i) from a closed position to an open position; or (ii) from the open position to the closed position. The switching valve prevents and allows transmission fluid flow through a flow path between a transmission fluid pump and a pressure regulator valve of the CVT when the switching valve is in the closed position and the open position, respectively. An adjustment determination module determines a pressure adjustment when the switching valve actuates. A target pressure module determines a target pressure output from the pressure regulator valve. An adjusting module determines an adjusted target pressure based on the pressure adjustment and the target pressure. A regulator valve control module controls opening of the pressure regulator valve based on the adjusted target pressure.
Abstract:
A fluid circuit includes a device, a cooler, and a valve. The valve includes a housing, a sealing member, a biasing device, and an actuator. The sealing member moves inside the housing between a first position and a second position. The actuator includes a smart material that is activated when the temperature of a fluid inside the housing exhibiting at least a first temperature, causing the sealing member to move to the second position. The smart material is deactivated when the fluid is a sufficient number of degrees less than the first temperature, causing the sealing member to move to the first position. The fluid flows from the housing to the device and then to the housing when the sealing member is in the first position. The fluid flows from the housing to the cooler and then to the device when the sealing member is in the second position.
Abstract:
A continuously variable transmission (CVT) includes an input member, an output member, a variator assembly having a primary variator pulley operable for receiving an input torque via the input member, a secondary variator pulley operable for transmitting an output torque via the output member, and an endless rotatable drive element in frictional engagement with the primary and secondary variator pulleys, first and second speed sensors operable for measuring a respective rotational speed of the primary and secondary variator pulleys, and a controller. The controller executes a method to detect gross slip of the endless rotatable drive element with respect to the primary and secondary variator pulleys using the measured rotational speeds, and in response to the detected gross slip, to request a reduction in the input torque by a calculated amount over a calibrated duration until a level of the detected gross slip reaches a calibrated slip level.
Abstract:
A hydraulic control system for a dual clutch transmission includes a plurality of solenoids and valves in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
Abstract:
A hydraulic control system for a dual clutch transmission includes a plurality of solenoids and valves in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.