Abstract:
A control apparatus for controlling at least one heating, ventilation, and air conditioning (HVAC) system includes a microvalve, at least one intelligent controller, a local intelligent gateway in communication with the intelligent controller, a cloud platform in communication with the local intelligent gateway, and a local device configured to communicate through the cloud platform to the intelligent controller. The intelligent controller is configured to control one or more HVAC components, measure air conditioning system parameters including compressor discharge and suction pressure and compressor temperature of a compressor within the HVAC system, and air out, evaporator out, and condenser out temperatures, and superheat and subcooling, and input the measured air conditioning system parameters to the cloud platform to autonomously monitor air conditioning system health and real-time refrigerant charge levels.
Abstract:
A two-stage fluid control valve includes a first stage electronically switchable, bi-stable two-port valve movable between an open position and a leak-free closed position, and a second stage microvalve configured to control the flow of fluid through a fluid outlet of the two-stage fluid control valve when the first stage electronically switchable, bi-stable two-port valve is in the open position. The electronically switchable, bi-stable two-port valve is disposed between the second stage microvalve and a fluid inlet of the two-stage fluid control valve.
Abstract:
An electronically switchable, bi-stable two-port valve includes a sleeve, a first pole piece having air flow passages formed therethrough and a first wire-wound coil mounted therein and connected to a source of electrical power, a second pole piece having air flow passages formed therethrough and a second wire-wound coil mounted therein and connected to the source of electrical power, and a permanent magnet defining an armature and movably mounted between the first and second pole pieces. The first pole piece is mounted in a first end of the sleeve and the second pole piece is mounted in a second end of the sleeve.
Abstract:
An improved aerosol dispensing apparatus includes an aerosol container, a discharge piece, an actuator, a flow control canister valve assembly attached to the aerosol container, a battery, and an electronically controlled flow control valve electronically connected to the battery and in fluid communication with the flow control canister valve assembly. The aerosol container and the attached flow control canister valve assembly are further attached to the actuator and the actuator is mounted for slidable movement within the discharge piece. The flow control canister valve assembly is movable between an open position wherein a volume of an aerosol formulation is directed from the aerosol container through the flow control canister valve assembly to the electronically controlled flow control valve, and a closed position wherein the aerosol formulation is not permitted to flow through the flow control canister valve assembly to the electronically controlled flow control valve.
Abstract:
A microvalve includes a first plate having a surface defining an actuator cavity. A second plate has a surface that abuts the surface of the first plate and includes a displaceable member that is disposed within the actuator cavity for movement between a closed position, wherein the displaceable member prevents fluid communication through the microvalve, and an opened position, wherein the displaceable member does not prevent fluid communication through the microvalve. An actuator is connected to the displaceable member and has only one or two pairs of actuator ribs.
Abstract:
A system for controlling one or more structural appliances, such heating, cooling, and ventilation sensor systems utilizing cloud computing architecture, includes at least one intelligent controller, a local intelligent gateway in communication with the intelligent controller, and a cloud computing network in communication with the local intelligent gateway. A local device is operative to communicate through the cloud computing network to the intelligent controller.
Abstract:
A method of cleaning contaminants, including particulate contaminants, from a valve in a fluid system includes moving a valve flow control element of the valve from a first position to a second position in response to a change in a condition in the fluid system other than a change in superheat.
Abstract:
A method of bonding an electrical component to a substrate includes applying solder paste on to a substrate. Solder preform has an aperture is formed therethrough and is then urged into contact with the solder paste, such that solder paste is urged through the aperture. An electrical component is then urged into contact with the solder preform and into contact with the solder paste that has been urged through the aperture, thereby bonding the electrical component, the solder preform, and the substrate together to define a reflow subassembly.
Abstract:
An improved aerosol dispensing apparatus includes an aerosol container, a discharge piece movably mounted to the aerosol container, a flow control valve mounted within the discharge piece, a battery, and an electronically controlled metering valve electronically connected to the battery and in fluid communication with the flow control valve. The flow control valve is movable between an open position wherein a volume of an aerosol formulation is directed from the aerosol container through the flow control valve to the metering valve, and a closed position, wherein the metering valve is configured to precisely control a flow of the aerosol formulation outward of the discharge piece. A solenoid is electronically connected to the battery and is movable between an actuated position wherein the solenoid urges the flow control valve into the open position, and an un-actuated position wherein the flow control valve remains in the closed position.
Abstract:
An improved aerosol dispensing apparatus includes an aerosol container, a discharge piece movably mounted to the aerosol container, a metering valve mounted within the discharge piece, a battery, and an electronically controlled flow control valve. The flow control valve is electronically connected to the battery and is in fluid communication with the metering valve. The metering valve is movable between an open position wherein a volume of an aerosol formulation is directed from the aerosol container through the metering valve to the electronically controlled flow control valve, and a closed position wherein the aerosol formulation is not permitted to flow through the metering valve. The electronically controlled flow control valve is configured to precisely control a flow of the aerosol formulation outward of the discharge piece.