Abstract:
The present application relates to methods of using anti-PD-L1 antibodies to enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, including infection (e.g., acute and chronic) and tumor immunity.
Abstract:
The present application relates to anti-PD-L1 antibodies, nucleic acid encoding the same, therapeutic compositions thereof, and their use enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, including infection (e.g., acute and chronic) and tumor immunity.
Abstract:
The present invention provides improved binding compounds capable of specifically binding Gram-positive bacteria. Binding compounds are provided that are fully human, enabling therapeutic applications in human individuals.
Abstract:
The present invention provides therapeutic and diagnostic methods and compositions for cancer, for example, bladder cancer. The invention provides methods of treating bladder cancer, methods of determining whether a patient suffering from bladder cancer is likely to respond to treatment comprising a PD-L1 axis binding antagonist, methods of predicting responsiveness of a patient suffering from bladder cancer to treatment comprising a PD-L1 axis binding antagonist, and methods of selecting a therapy for a patient suffering from bladder cancer, based on expression levels of a biomarker of the invention (e.g., PD-L1 expression levels in tumor-infiltrating immune cells in a tumor sample obtained from the patient) and/or based on the determination of a tumor sample subtype.
Abstract:
This application discloses methods and compositions for use in treating cancer, including breast cancer (such as metastatic triple negative breast cancer, mTNBC), urothelial carcinoma, renal cell carcinoma, and liver cancer (hepatocellular carcinoma, HCC) with the combination of a PD-1 axis binding antagonist (e.g., a PD-L1 binding antibody such as atezolizumab) and an IL6 antagonist (e.g. an anti-IL6 receptor antibody such as tocilizumab), optionally further comprising a VEGF antagonist (e.g. an anti-VEGF antibody such as bevacizumab). Optionally, the patient has C-reactive protein (CRP) and/or IL-6 level(s) above the upper limit of normal. Optionally, the cancer is PD-L1 positive.
Abstract:
The invention provides anti-wall teichoic acid antibodies, antibiotic-linker intermediates, and antibody-antibiotic conjugate compound, and methods of making and using the same.
Abstract:
The present invention provides improved binding compounds capable of specifically binding Gram-positive bacteria. Binding compounds are provided that are fully human, enabling therapeutic applications in human individuals.