Abstract:
A system for growing a crystal is provided that includes a crucible, a furnace, and a heat transfer device. The crucible has a first volume to receive therein a material for growing a crystal. The furnace has an ampoule configured to receive the crucible within the ampoule. The furnace is configured to produce a lateral thermal profile combined with a vertical thermal gradient. The heat transfer device is disposed under the crucible and configured to produce a leading edge of growth of the crystal at a bottom of the crucible. The heat transfer device includes at least one elongate member disposed beneath the crucible and extending along a length of the crucible.
Abstract:
A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
Abstract:
A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.
Abstract:
Radiation detectors and methods of fabricating radiation detectors are provided. One method includes mechanically polishing at least a first surface of a semiconductor wafer using a polishing sequence including a plurality of polishing steps. The method also includes growing a passivation oxide layer on a top of the polished first surface and depositing patterned metal contacts on a top of the passivation oxide layer. The method further includes applying a protecting layer on the patterned deposited metal contacts, etching a second surface of the semiconductor and applying a monolithic cathode electrode on the etched second surface of the semiconductor. The method additionally includes removing the protecting layer from the patterned metal contacts on the first surface, wherein the patterned metal contacts are formed from one of (i) reactive metals and (ii) stiff-rigid metals for producing inter-band energy-levels in the passivation oxide layer.
Abstract:
Systems and methods for scanning with radiation detectors are provided. One system includes at least one radiation scanning camera-head, an array of at least one pixelated radiation detector having an imaging surface including a two dimensional array of pixels, and a scanning unit positioned between the radiation detector and the object. The scanning unit includes first and second radiation blocking plates having first and second two-dimensional arrays of openings, respectively, wherein the array of pixels and the first and second arrays of openings have a same pitch. Additionally, for each of a plurality of scan positions of the scanning unit, the first and second moveable plates and the imaging surface are positioned differently with respect to each other to produce different inclination angles in response to each scan position.
Abstract:
A radiation detector assembly is provided that includes a semiconductor detector, a collimator, plural pixelated anodes, and at least one processor. The collimator has openings defining pixels. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon and to generate at least one secondary signal responsive to reception of a photon by at least one surrounding anode. Each pixelated anode includes a first portion and a second portion located in different openings of the collimator. The at least one processor is operably coupled to the pixelated anodes, and configured to acquire a primary signal from one of the pixelated anodes; acquire at least one secondary signal from at least one neighboring pixelated anode; and determine a location for the reception of the photon using the primary signal and the at least one secondary signal.
Abstract:
A radiation detection system is provided. The radiation detection system includes a radiation detector. The radiation detector includes a semiconductor layer having a first surface and a second surface opposite the first surface, a monolithic cathode disposed on the first surface, and multiple pixelated anode strip-electrodes disposed on the second surface in a coplanar arrangement. The multiple pixelated anode strip-electrodes include a first set of pixelated anode strip-electrodes disposed along a first direction and a second set of pixelated anode strip-electrodes disposed along a second direction orthogonal to the first direction. Each pixelated anode strip-electrode of the first set of pixelated anode strip-electrodes includes a first respective multiple segments disposed along the first direction. Each pixelated anode strip-electrode of the second set of pixelated anode strip-electrodes includes a second respective multiple segments disposed along the second direction.
Abstract:
The systems and methods described herein measure a collected energy signal from a first pixel of a radiation pixelated detector during at least one event, and measure adjacent energy signals from at least two pixels adjacent to the first pixel of the radiation pixelated detector during the at least one event. The systems and methods generate a first spectrum based on the collected energy signal of the at least one event within an energy window. The energy window is a predetermined energy range for medical imaging. The systems and methods determine a delta charge based on the collected energy signal and the adjacent energy signals generated during the at least one event, generate a second spectrum based on the delta charge of the at least one event outside the energy window, and stretch the second spectrum to combine with the first spectrum to form a corrected energy spectrum.
Abstract:
A radiation detector system is provided that includes a semiconductor detector, plural pixelated anodes, and a side anode. The semiconductor detector has a surface. The pixelated anodes are disposed on the surface, and are arranged in a grid defining a footprint. The side anode is disposed outside of the footprint defined by the plural pixelated anodes, and has a length extending along at least two of the pixelated anodes.
Abstract:
A radiation detection system is provided. The radiation detection system includes a radiation detector. The radiation detector includes a semiconductor layer having a first surface and a second surface opposite the first surface, a monolithic cathode disposed on the first surface, and multiple pixelated anode strip-electrodes disposed on the second surface in a coplanar arrangement. The multiple pixelated anode strip-electrodes include a first set of pixelated anode strip-electrodes disposed along a first direction and a second set of pixelated anode strip-electrodes disposed along a second direction orthogonal to the first direction. Each pixelated anode strip-electrode of the first set of pixelated anode strip-electrodes includes a first respective multiple segments disposed along the first direction. Each pixelated anode strip-electrode of the second set of pixelated anode strip-electrodes includes a second respective multiple segments disposed along the second direction.