Abstract:
A switching circuit includes a first switch and a second switch respectively connecting a first terminal and a second terminal of an electrical coil to a positive terminal of a voltage source, a third switch and a fourth switch respectively connecting the first terminal and the second terminal of the electrical coil to a negative terminal of the voltage source, and a controller to control the switching circuit in a current control mode to alternate a voltage polarity of the voltage source to thereby control a magnitude and direction of the electrical current of the electrical coil, and to control the switching circuit in a current hold mode to disconnect the electrical coil from the voltage source and to short-circuit the electrical coil to maintain the magnitude and direction of the electrical current at the transition time when the switching circuit switched to the current hold mode.
Abstract:
A flexible circuit board for being inserted into an in-vivo imaging device is provided. The flexible circuit board may include a plurality of flexible installation units connected to one another through flexible connection units. The flexible installation units may be capable of having electrical components disposed thereon at a size suitable for being included in an in-vivo imaging device which may be inserted into a body lumen, e.g., a capsule endoscope. An in-vivo imaging device which may enclose such a full-flexible circuit board is also provided.
Abstract:
A method and device may control energy consumption of in an in vivo imaging device by determining or estimating an amount of energy needed to capture images at a frame rate until a complete passage of the device through a predetermined region of the gastrointestinal tract, and alter or limit the frame capture rate accordingly.
Abstract:
A device and system for monitoring the status of a battery in an in-vivo imaging device, prior to use of the in-vivo imaging device. The device may include a frame counter for counting the number of frames captured and may include monitoring the voltage of the battery. A warning signal is generated if it is determined that the battery is faulty prior to use. The warning signal can be generated by the device and/or by a receiver which receives data from the in-vivo imaging device and/or a by workstation which receives the data from the receiver.
Abstract:
A flexible circuit board for being inserted into an in-vivo imaging device is provided. The flexible circuit board may include a plurality of flexible installation units connected to one another through flexible connection units. The flexible installation units may be capable of having electrical components disposed thereon at a size suitable for being included in an in-vivo imaging device which may be inserted into a body lumen, e.g., a capsule endoscope. An in-vivo imaging device which may enclose such a full-flexible circuit board is also provided.