Abstract:
A device for cryotherapy treatment of gastrointestinal lesions includes a cooling member that may be attached to a first tube for pressurizing cryogenic fluid through the tube and into the cooling member through nozzles located at the distal end of the first tube. A second tube may be attached to the cooling member for evacuating the cryogenic fluid from within the cooling member, following the fluid's expansion once it exits the first tube. The cryotherapy device may be attached to an endoscope such that the first tube may be passed through the endoscope's working channel, while the second tube may be passed along the endoscope's circumference. The cryotherapy device may further comprise securing means attached to the first tube, for securing the first tube to the endoscope's working channel, thus preventing free rotation of the cryotherapy device within the endoscope, relative to the rotation of the endoscope. In addition, the securing means assist in maintaining a constant and known location of the nozzles relative to the distal end of the endoscope.
Abstract:
In-vivo medical devices, systems and methods of operating such devices include a permanent magnetic assembly interacting with external magnetic fields for magnetically maneuvering said device to a desired location along a patient's GI tract, and anchoring said devices to the desired location for a period of time. The in-vivo medical device includes illumination sources, an optical system, and an image sensor for imaging the GI tract and thus assisting in locating the desired location. Some in-vivo medical devices include a concave window, which enables better imaging of small areas along the tissue. Furthermore, in-vivo devices with a concave window enable carrying operating tools without damaging the tissue of the GI tract, since prior to operation, the tools protrude from the concave window but remain behind the ends of the edges of the concave window.
Abstract:
An in-vivo device includes a magnetic steering unit (MSU) to maneuver it by an external electromagnetic field. The MSU may include a permanent magnets assembly to produce a magnetic force for navigating the device. The MSU may include a magnets carrying assembly (MCA) to accommodate the permanent magnet(s). The MCA may be designed to generate eddy currents, in response to AC magnetic field, to apply a repelling force. The in-vivo device may also include a multilayered imaging and sensing printed circuit board (MISP) to capture and transmit images. The MISP may include a sensing coil assembly (SCA) to sense electromagnetic fields to determine a location/orientation/angular position of the in-vivo device. Data representing location/orientation/angular position of the device may be used by a maneuvering system to generate a steering magnetic field to steer the in-vivo device from one location or state to another location or state.
Abstract:
In-vivo devices, systems and methods for the detection of blood within in-vivo bodily fluids. The methods include irradiating in-vivo fluids passing through a gap in a housing of an in-vivo device introduced to the GI tract of a subject with a plurality of illumination sources positioned on a first side of a gap; detecting with at least one light detector positioned on the opposite side of the gap and facing the illumination sources, light irradiated by the illumination sources; transmitting a plurality of values representing the light detected over time; converting these values to blood concentration values over time, and comparing the blood concentration values to a predetermined threshold value. Based on the comparison, the method includes determining the type of bleeding profile, such that if a plurality of blood concentration values measured consecutively is above the threshold value, the bleeding profile indicates bleeding.
Abstract:
An in vivo capsule has a cauterization element that may be deployed by physician while in vivo for cauterizing a lesion, such as bleeding. Energy is transferred from outside of the patient's body to the capsule and specifically to the ablating element, such as via a resonance circuit. Accordingly, it is the object of the present invention to provide a method and apparatus for precisely cauterizing or ablating tissue in-vivo. Embodiments of the invention may provide an in-vivo device having a cauterization or ablation element incorporated therein and a system and method for controlled navigation of the in-vivo cauterization device through a body lumen.
Abstract:
An in vivo capsule has a cauterization element that may be deployed by physician while in vivo for cauterizing a lesion, such as bleeding. Energy is transferred from outside of the patient's body to the capsule and specifically to the ablating element, such as via a resonance circuit. Accordingly, it is the object of the present invention to provide a method and apparatus for precisely cauterizing or ablating tissue in-vivo. Embodiments of the invention may provide an in-vivo device having a cauterization or ablation element incorporated therein and a system and method for controlled navigation of the in-vivo cauterization device through a body lumen.
Abstract:
A device for cryotherapy treatment of gastrointestinal lesions includes a cooling member that may be attached to a first tube for pressurizing cryogenic fluid through the tube and into the cooling member through nozzles located at the distal end of the first tube. A second tube may be attached to the cooling member for evacuating the cryogenic fluid from within the cooling member, following the fluid's expansion once it exits the first tube. The cryotherapy device may be attached to an endoscope such that the first tube may be passed through the endoscope's working channel, while the second tube may be passed along the endoscope's circumference. The cryotherapy device may further comprise securing means attached to the first tube, for securing the first tube to the endoscope's working channel, thus preventing free rotation of the cryotherapy device within the endoscope, relative to the rotation of the endoscope. In addition, the securing means assist in maintaining a constant and known location of the nozzles relative to the distal end of the endo scope.
Abstract:
The invention provides a device for in-vivo imaging, for example, using an in-vivo imaging device including an imager a lens and an illumination source, all positioned behind a single viewing window. The in-vivo imaging device may include an element to block light from reaching a point of reflection on the inner surface of the viewing window, thereby preventing the light from being received by the imager.
Abstract:
A flexible circuit board for being inserted into an in-vivo imaging device is provided. The flexible circuit board may include a plurality of flexible installation units connected to one another through flexible connection units. The flexible installation units may be capable of having electrical components disposed thereon at a size suitable for being included in an in-vivo imaging device which may be inserted into a body lumen, e.g., a capsule endoscope. An in-vivo imaging device which may enclose such a full-flexible circuit board is also provided.