Abstract:
A handheld interrogation device includes a controller configured to generate a power signal. The controller is also configured to determine tire pressure data based on a signal received from a tire pressure sensor. The handheld interrogation device also includes a primary coil coupled to the handheld interrogation device and configured to transmit the power signal to a sensor coil of the tire pressure sensor and to receive a data signal from the sensor coil, via inductive coupling, in response to the primary coil being within a predetermined distance of the sensor coil.
Abstract:
A system includes a wheel, a hubcap coupled to the wheel and a tire pressure sensor coupled to the wheel. The system also includes a brake control unit (BCU) and an active hubcap circuit coupled to the hubcap. The active hubcap circuit is electrically coupled to the tire pressure sensor and the BCU and configured to receive an input signal from at least one of the tire pressure sensor or the BCU, generate an output signal by increasing a signal to noise ratio of the input signal and output the output signal to at least one of the BCU or the tire pressure sensor.
Abstract:
System and methods for indicating a tire pressure condition are disclosed. Some systems and methods include receiving, by a control unit comprising a processor and a tangible, non-transitory memory, a tire pressure data, determining, by the control unit, a relationship of the tire pressure data to a predetermined tire pressure, and causing, by the control unit, an output device to display a value in accordance with the relationship, wherein the output device is externally located on an aircraft.
Abstract:
A distributed sensing system is provided. The system may have a primary portion and a distributed sensing portion separated by an air gap. The primary portion and the distributed sensing portion may be inductively coupled by a transformer having a primary coil and a secondary coil. A controller may direct a power supply to drive the primary coil with a driving waveform. The controller may vary a frequency of the driving waveform to substantially equal a resonant frequency of the transformer. The controller may monitor the power transfer between the primary coil and the secondary coil and may vary the frequency of the driving waveform in response. In this manner, the amount of power transferred from the primary coil to the secondary coil may be optimized in response to the controller substantially matching the driving waveform to the resonant frequency of the transformer.
Abstract:
A brake control system may comprise an inertial sensor coupled to an axle and configured to measure a linear acceleration of the axle and an antiskid control (ASK) in electronic communication with the inertial sensor, wherein at least one of the inertial sensor or the ASK calculate a linear velocity of the axle based on the linear acceleration, and the ASK uses the linear velocity to calculate a wheel slip speed.
Abstract:
A system includes a wheel, a hubcap coupled to the wheel and a tire pressure sensor coupled to the wheel. The system also includes a brake control unit (BCU) and an active hubcap circuit coupled to the hubcap. The active hubcap circuit is electrically coupled to the tire pressure sensor and the BCU and configured to receive an input signal from at least one of the tire pressure sensor or the BCU, generate an output signal by increasing a signal to noise ratio of the input signal and output the output signal to at least one of the BCU or the tire pressure sensor.
Abstract:
A connector assembly includes a first side connector and a second side connector. The first side connector includes a first protective housing, a first inductor including a first end face, and a first physical connector element. The second side connector includes a second protective housing, a second inductor including a second face, and a second physical connector element. The second physical connector element is engaged with the first physical connector element and physically connects the first side connector to the second side connector such that the first end face and the second end face are adjacent. The first inductor and the second inductor are axially spaced apart. The first inductor and the second inductor form an inductive telemetry connection between the first side connector and the second side connector.
Abstract:
Distributing sensing systems that are capable of wirelessly communicating power and data over power lines are provided. The distributed sensing system may comprise a distributed sensing portion and a primary portion. The distributed sensing portion may include a sensor, an analog to digital converter (“ADC”) and a microcontroller. The sensor may be capable of monitoring a parameter. The sensor may be configured to output an analog reading. The ADC may be configured to convert the analog reading to a digital signal. The microcontroller may be configured to modulate a power signal to encode the digital signal in the power signal. The primary portion may be configured to wirelessly receive the power signal from the distributed sensing portion. The primary portion may include a signal demodulation module. The signal demodulation module may be configured to extract the digital signal from the power signal.
Abstract:
A control unit supplies power and data through a rotary transformer to a sensor assembly disposed on a wheel. The data sent by the control unit to the sensor assembly is produced by modulation of the power signal using frequency shift key or amplitude shift key modulation. The sensor assembly converts the received power signal that power to operate the circuitry and sensor assembly, converts the FSK or ASK data signal, and sends sensor data back to the control unit through the rotary transformer by load modulation. The control unit demodulates the load modulated sensor data.
Abstract:
System and methods for indicating a tire pressure condition are disclosed. Some systems and methods include receiving, by a control unit comprising a processor and a tangible, non-transitory memory, a tire pressure data, determining, by the control unit, a relationship of the tire pressure data to a predetermined tire pressure, and causing, by the control unit, an output device to display a value in accordance with the relationship, wherein the output device is externally located on an aircraft.