Abstract:
In various embodiments, a hazard detector is presented. The hazard detector may include a hazard detection sensor that detects a presence of a type of hazard. The hazard detector may include a light and a light sensor that senses a brightness level in an ambient environment of the hazard detector. The hazard detector may include a processing system configured to receive an indication of the brightness level in the ambient environment of the hazard detector from the light sensor. The processing system may determine the brightness level in the ambient environment of the hazard detector has reached a threshold value. A status check of one or more components of the hazard detector may be performed. The processing system may cause the light to illuminate using a selected illumination state in response to the determining the brightness level in the ambient environment of the hazard detector has reached the threshold value.
Abstract:
A method for establishing a pairing between a hazard detector and an online account may include instantiating an application on a mobile computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the hazard detector. The hazard detector may broadcast a Wi-Fi access point, and the application may join the Wi-Fi access point. The application can be authenticated by the hazard detector using the second code, and the application can receive an identity of a home Wi-Fi network from a user. The application can then transmit the identity of the home Wi-Fi network to the hazard detector. The hazard detector can use the home Wi-Fi network to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
Various methods and systems for smart home devices are presented. Such smart home devices may include one or more environmental sensors that are configured to detect the presence of one or more environmental conditions. Such smart home devices may include a light comprising a plurality of lighting elements. Such a light may be configured to illuminate using a plurality of colors and, possibly, a plurality of animation patterns. Such smart home devices may include a processing system configured to cause the light to illuminate using the plurality of colors and the plurality of animation patterns in response to a plurality of states of the smart home device.
Abstract:
Various methods and systems for hazard detectors are presented. Such hazard detectors may include one or more hazard sensors that are configured to detect the presence of one or more types of hazards. Such hazard detectors may include a circular or a ring-shaped light comprising a plurality of lighting elements. Such a ring-shaped light may be configured to illuminate using a plurality of colors and, possibly, a plurality of animation patterns. Such hazard detectors may include a processing system configured to cause the ring-shaped light to illuminate using the plurality of colors and the plurality of animation patterns in response to a plurality of states corresponding to the battery module and the plurality of hazard sensors.
Abstract:
include using an application on a mobile device to establish first wireless communications with a first smart-home device that was previously paired with the user account. The method may also include transmitting, to the first smart-home device and using the first wireless protocol, a transmission that instructs the first smart-home device to establish second wireless communications with a second smart-home device, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first smart-home device using the first wireless protocol, where the credentials are then sent from the first smart-home device to the second smart-home device using the second wireless protocol, such that the second smart-home device can pair with the user account using the first wireless protocol.
Abstract:
A method for establishing a pairing between a hazard detector and an online account may include instantiating an application on a mobile computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the hazard detector. The hazard detector may broadcast a Wi-Fi access point, and the application may join the Wi-Fi access point. The application can be authenticated by the hazard detector using the second code, and the application can receive an identity of a home Wi-Fi network from a user. The application can then transmit the identity of the home Wi-Fi network to the hazard detector. The hazard detector can use the home Wi-Fi network to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
A hazard detector may include a light sensor that senses a brightness level in an ambient environment. The hazard detector can have a processing system that receives an indication of the brightness level in the ambient environment from the light sensor. The processing system may then determine whether illumination in the ambient environment has been dimmed. Responsive to the dimming, the processing system may access information representative of a status of one or more components of the hazard detector. An illumination state may then be selected from a plurality of illumination states based on the accessed information representative of the status of the one or more components of the hazard detector. A light may then be illuminated based on the selected illumination state.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device can include: a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The user interface can receive an adjusted value for a setting of the hazard detector and transmit the adjusted value to the computer server system. The computer server system may: determine that the adjusted value corresponds to the hazard detector, receive a check-in event from the hazard detector, and transmit the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector may then apply the adjusted value to the setting.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.