Abstract:
Examples disclosed herein provide a platform for autonomously rotating a computing device having display surfaces that may be disposed on multiple sides of the computing device. One example method includes monitoring information displayed on the display surfaces and determining there is relevant information from one of the display surfaces to be directed towards a user of the computing device. The method further includes detecting a location of the user with respect to the computing device and rotating the computing device so that the display surface with the relevant information is to be directed towards the detected location of the user.
Abstract:
In one example in accordance with the present disclosure an electronic device with a multi-layer heat reduction component is described. The device includes a number of integrated circuits and a first layer in contact with at least one of the number of integrated circuits to remove heat from at least one integrated circuit. The device also includes a second layer separated from the first layer by an air gap to reduce heat transfer between the first layer and the second layer. The second layer is retractable to expose the first layer when docked to a station. The electronic device operates in a first mode when docked to a station and a second mode when not docked to the station.
Abstract:
An example method includes receiving an indication of a first level of authentication for an electronic device, the first authentication being associated with a first authentication device associated with the user; receiving an indication of a second level of authentication for the electronic device, the second authentication being associated with a second authentication device associated with the user, the second authentication device being different from the first authentication device; and upon receiving the indication of at least the first level of authentication and the second level of authentication, allow access to the electronic device.
Abstract:
In some examples, a non-transitory machine-readable medium can include instructions executable by a processing resource to: monitor system power for a computing system that includes a first computing component type and a second computing component type, determine a power event type for the computing system based on the monitored system power, and alter a power limit of the second computing component type by a predetermined increment based on the power event type while maintaining a power limit of the first computing component type when the second computing component type is a sub-system of the computing system.
Abstract:
An example display device includes a universal serial bus interface to couple to a host computing device; and a power delivery controller interconnected with the universal serial bus interface. The power delivery controller is to obtain from a host state register stored at the display device, a current power state of the host computing device responsive to a change in state of the display device from a first power state to a second power state. The power delivery controller is further to send a power delivery protocol message to the host computing device to synchronize a power state of the host computing device to an updated power state corresponding to the second power state when the current power state of the host computing device corresponds to the first power state. The power delivery controller is further to update the host state register to reflect the updated power state.
Abstract:
An example intrusion detection system for a computer includes: an ambient light sensor to detect an increase in ambient light indicative of a housing of the computer being opened; and a super input/output integrated circuit (SIO) to receive a signal from the ambient light sensor indicating that the housing of the computer has been opened.
Abstract:
Example thermal modules are disclosed. An example thermal module for use with an electronic device includes a first heatsink defining a first airflow exit. The first heatsink including a first set of fins having a first height and a second set of fins having a second height. The second height being less than the first height. The second set of fins being adjacent the first airflow exit. A second heatsink defines a second airflow exit. The second heatsink is spaced from the first heatsink to form a gap therebetween. The second heatsink is thermally coupled to the first heatsink via a heat pipe.
Abstract:
In some examples, a non-transitory machine-readable medium can include instructions executable by a processing resource to: monitor system power for a computing system that includes a first computing component type and a second computing component type, determine a power event type for the computing system based on the monitored system power, and alter a power limit of the second computing component type by a predetermined increment based on the power event type while maintaining a power limit of the first computing component type when the second computing component type is a sub-system of the computing system.
Abstract:
An example method includes receiving an indication of a first level of authentication for an electronic device, the first authentication being associated with a first authentication device associated with the user; receiving an indication of a second level of authentication for the electronic device, the second authentication being associated with a second authentication device associated with the user, the second authentication device being different from the first authentication device; and upon receiving the indication of at least the first level of authentication and the second level of authentication, allow access to the electronic device.
Abstract:
In an example implementation according to aspects of the present disclosure, a method may include detecting, by a first-computing device, a second computing device when the second computing device is in physical proximity to the first computing device, and establishing a secure wireless connection between the first and second computing devices while the first and second computing devices remain in physical proximity to each other. The method further includes determining, for each file stored on the second computing device, whether the file or a corresponding file stored on the first computing device is the later version, and updating, by the first computing device, the file and the corresponding file stored on the first computing device to the later version.