Abstract:
A method for displaying a flight path navigational procedure includes, but is not limited to, detecting with a position detecting system a current location of the aircraft, obtaining from an electronic storage device a plurality of flight path navigation procedures available for a geographic location, determining with a flight path analysis system a preferred flight path that will be taken by the aircraft, and displaying on a display unit a moving map corresponding with the current location of the aircraft and further displaying a depiction of the plurality of flight path navigation procedures on the moving map. The preferred flight path is displayed with a visual cue that visually differentiates the preferred flight path from the other flight paths of the plurality of flight path navigation procedures.
Abstract:
A method is provided for displaying integrated minimum vectoring and safe altitude information on a display device in an aircraft. The method comprises displaying a graphical representation of a safe altitude sector and a vectoring altitude sector on the display device, and displaying a graphical representation of the aircraft on the display device to indicate the current location of the aircraft and a minimum altitude value associated therewith. The safe altitude sector corresponds to a first geographic area having a designated minimum safe altitude value associated therewith. The vectoring altitude sector corresponds to a second geographic area having a designated minimum vectoring altitude value associated therewith that is below the designated minimum safe altitude value. The graphical representation of the aircraft is displayed within at least one of the graphical representation of the safe altitude sector and the graphical representation of the vectoring altitude sector.
Abstract:
A system and method are provided for highlighting and selecting one of a plurality of graphical IFR procedure depiction on an aircraft display. A displayed legend includes a plurality of textual procedure identifications, one each for each of the graphical IFR procedure depictions. Movement of a cursor over either a graphical IFR procedure depiction or a textual procedure identification highlights both, and selection thereof removes all other graphical IFR procedure depictions and textual procedure identifications from being displayed.
Abstract:
A system and method are provided for displaying terrain altitudes on an aircraft display that are easily understood by the pilot. A plurality of bands are defined, wherein each band defines a range of altitudes of terrain in the vicinity of the aircraft. A list of altitudes representing each band is displayed in a legend. A band is highlighted when a number associated therewith is selected, and a number is highlighted when the band associated therewith is selected. The band or number may be selected, for example, by cursor, or the band may be selected by position of the aircraft.
Abstract:
A system and method intelligently mines information and briefs an aircrew on conditions outside the aircraft. A mission information manager proactively mines incoming data sources, filters for relevance to current flight, retrieves the most up-to-date information, dynamically selects an appropriate format based on perceptual/cognitive affordances of content, and presents integrated, intuitive data that allows the flight crew to rapidly acquire relevant awareness of conditions outside the aircraft. An expert mission model system reviews incoming information for any situations that are of immediate mission concern. The system presents this information to the flight crew's attention while they have the greatest operational flexibility. Additionally, a human factors module provides decision aiding for select critical phases while taking into account information both outside and inside the aircraft.
Abstract:
Methods and systems are provided for providing procedure information associated with an aircraft procedure onboard an aircraft. An exemplary method involves obtaining a briefing sequence for the aircraft procedure and providing the procedure information via the output device, wherein the procedure information is provided in accordance with the briefing sequence. When the output device is realized as an audio output device, the procedure information is sequentially provided auditorily via the audio output device. In one or more embodiments, the procedure information is sequentially indicated on a display device onboard the aircraft in concert with the auditorily provided procedure information.
Abstract:
A display system for an aircraft includes a processing unit configured to determine runway lighting information and lighting status for runway lighting associated with a selected runway and to generate display commands based on the runway lighting information and the lighting status; and a display device coupled the processing unit and configured to receive the display commands and to display symbology representing the runway lighting information.
Abstract:
A method is provided for displaying integrated minimum vectoring and safe altitude information on a display device in an aircraft. The method comprises displaying a graphical representation of a safe altitude sector and a vectoring altitude sector on the display device, and displaying a graphical representation of the aircraft on the display device to indicate the current location of the aircraft and a minimum altitude value associated therewith. The safe altitude sector corresponds to a first geographic area having a designated minimum safe altitude value associated therewith. The vectoring altitude sector corresponds to a second geographic area having a designated minimum vectoring altitude value associated therewith that is below the designated minimum safe altitude value. The graphical representation of the aircraft is displayed within at least one of the graphical representation of the safe altitude sector and the graphical representation of the vectoring altitude sector.
Abstract:
A system and method display general terrain clearance awareness, whether the aircraft is off route, on airway, off procedure, or on procedure, so altitude thresholds are not violated and EGPWS alerts are avoided, while reducing clutter in displaying the information. Altitude, location, and rate of change in altitude are considered in determining whether the aircraft will exceed the threshold altitude. A flight path or an area to be entered is highlighted when the threshold altitude will be violated by the aircraft with the current flight path. The threshold altitude may be a minimum or maximum allowed altitude, or the terrain.
Abstract:
Integrated controller-pilot datalink communication (CPDLC) systems and methods for operating the same are disclosed. In one implementation, an integrated CPDLC system includes a plurality of CPDLC-enabled avionics devices and a CPDLC context manager coupled with each of the plurality of CPDLC-enabled avionics devices. The CPDLC system further includes a shared CPDLC context memory coupled with the CPDLC context manager and a CPDLC message in/out buffer coupled with the CPDLC context manager.