Abstract:
A cooling circuit to receive a cooling fluid includes at least one shaped cooling pin disposed in the cooling circuit. The at least one shaped cooling pin has a first end and a second end extending along an axis. The first end has a first curved surface defined by a minor diameter and the second end has a second curved surface defined by a major diameter. The first curved surface is to be upstream in the cooling fluid and the minor diameter is less than the major diameter.
Abstract:
A method of producing an abrasive tip for a turbine blade includes producing or obtaining a metal powder that is mixed with an abrasive ceramic powder and producing or obtaining a metallic mold that is in the shape of an airfoil. The metallic mold includes a hollow interior portion. The method further includes sealing the metal and ceramic powder mixture within the hollow interior portion of the metallic mold under vacuum and subjecting the sealed mold to a hot isostatic pressing process. The hot isostatic pressing process compacts and binds the metal and ceramic powder mixture together into a solid article in the shape of the airfoil. Still further, the method includes slicing the solid article into a plurality of airfoil-shaped slices and bonding one slice of the plurality of airfoil-shaped slices to a tip portion of a turbine blade.
Abstract:
A method of producing an abrasive tip for a turbine blade includes producing or obtaining a metal powder that is mixed with an abrasive ceramic powder and producing or obtaining a metallic mold that is in the shape of an airfoil. The metallic mold includes a hollow interior portion. The method further includes sealing the metal and ceramic powder mixture within the hollow interior portion of the metallic mold under vacuum and subjecting the sealed mold to a hot isostatic pressing process. The hot isostatic pressing process compacts and binds the metal and ceramic powder mixture together into a solid article in the shape of the airfoil. Still further, the method includes slicing the solid article into a plurality of airfoil-shaped slices and bonding one slice of the plurality of airfoil-shaped slices to a tip portion of a turbine blade.
Abstract:
Turbine wheels, turbine engines, and methods of fabricating the turbine wheels are provided. An exemplary method includes fabricating a turbine wheel that includes a rotor disk and a plurality of turbine blades operatively connected to the rotor disk through a blade mount. The method includes locating a cooling passage within a blade mount preliminary configuration and a cooling inlet on a surface of the blade mount preliminary configuration. A rotor disk bonding surface geometry and a blade mount bonding surface geometry are designed based upon a stress analysis of the turbine wheel and locations of the cooling passage and cooling inlet. A rotor disk production configuration and a blade mount production configuration are generated based upon the preliminary configurations. A blade mount and a rotor disk are formed based upon the production configurations. A blade ring including a plurality of blade mounts is formed and bonded to the rotor disk.
Abstract:
An airfoil includes a leading edge and an opposing trailing edge. The airfoil includes a pressure sidewall and an opposing suction sidewall. A leading edge cavity is defined between the pressure sidewall and the suction sidewall. The leading edge cavity has a first end opposite the leading edge and a second end defined at a rib. The airfoil includes at least one pin structure defined in the leading edge cavity between the first end and the second end. The at least one pin structure includes a main body and a first branch. The main body is coupled to the second end and extends toward the first end. The first branch extends from the main body toward the first end.
Abstract:
A turbine blade and a radial turbine having at least one blade is provided. The turbine blade includes a trailing edge and a leading edge opposite the trailing edge. The turbine blade also includes a cooling passage defined internally within the turbine blade. The cooling passage is in fluid communication with a source of cooling fluid via a single inlet to receive a cooling fluid. The cooling passage diverges at a first point downstream from the single inlet into at least two branches that extend along the at least one blade from the first point to a second point near a tip of the leading edge and the cooling passage converges at the second point.
Abstract:
Turbine wheels, turbine engines, and methods of fabricating the turbine wheels are provided. An exemplary method includes fabricating a turbine wheel that includes a rotor disk and a plurality of turbine blades operatively connected to the rotor disk through a blade mount. The method includes locating a cooling passage within a blade mount preliminary configuration and a cooling inlet on a surface of the blade mount preliminary configuration. A rotor disk bonding surface geometry and a blade mount bonding surface geometry are designed based upon a stress analysis of the turbine wheel and locations of the cooling passage and cooling inlet. A rotor disk production configuration and a blade mount production configuration are generated based upon the preliminary configurations. A blade mount and a rotor disk are formed based upon the production configurations. A blade ring including a plurality of blade mounts is formed and bonded to the rotor disk.
Abstract:
Dual alloy bladed rotors are provided, as are methods for manufacturing dual alloy bladed rotors. In one embodiment, the method includes arranging bladed pieces in a ring formation such that contiguous bladed pieces contact along shank-to-shank bonding interfaces. The ring formation is positioned around a hub disk, which is contacted by the bladed pieces along a shank-to-hub bonding interface. A metallic sealing material is deposited between contiguous bladed pieces utilizing, for example, a laser welding process to produce an annular seal around the ring formation. A hermetic cavity is then formed, which is circumferentially bounded by the annular seal and which encloses the shank-to-shank and shank-to-hub bonding interface. Afterwards, a Hot Isostatic Pressing process is performed during which the ring formation and the hub disk are exposed to elevated pressures external to the hermetic cavity sufficient to diffusion bond the shank-to-shank and shank-to-hub bonding interface.
Abstract:
Dual alloy turbine rotors and methods for manufacturing the same are provided. The dual alloy turbine rotor comprises an assembled blade ring and a hub bonded to the assembled blade ring. The assembled blade ring comprises a first alloy selected from the group consisting of a single crystal alloy, a directionally solidified alloy, or an equi-axed alloy. The hub comprises a second alloy. The method comprises positioning a hub within a blade ring to define an interface between the hub and the blade ring. The interface is a non-contacting interface or a contacting interface. The interface is enclosed by a pair of diaphragms. The interface is vacuum sealed. The blade ring is bonded to the hub after the vacuum sealing step.
Abstract:
Embodiments of a gas turbine engine component having sealed stress relief slots are provided, as are embodiments of a gas turbine engine containing such a component and embodiments of a method for fabricating such a component. In one embodiment, the gas turbine engine includes a core gas flow path, a secondary cooling flow path, and a turbine nozzle or other gas turbine engine component. The component includes, in turn, a component body through which the core gas flow path extends, a radially-extending wall projecting from the component body and into the secondary cooling flow path, and one or more stress relief slots formed in the radially-extending wall. The stress relief slots are filled with a high temperature sealing material, which impedes leakage between the second cooling and core gas flow paths and which fractures to alleviate thermomechanical stress within the radially-extending wall during operation of the gas turbine engine.