Abstract:
A method is provided for displaying information on a display device of an aircraft. The method comprises receiving data indicating a point selected from a trajectory of a flight path; determining an estimated time of arrival minimum and an estimated time of arrival maximum based on the point; and displaying in a dialogue box associated with the trajectory of the flight path the estimated time of arrival minimum and the estimated time of arrival maximum for the point.
Abstract:
Systems and methods for performing airport surface collision-avoidance. A wingtip-mounted camera allows the pilot to positively ascertain that the wingtip will clear objects located in the video. An exemplary system implemented on an aircraft includes a wingtip module having a camera that generates a video stream and a communication device that transmits the generated video stream. A processor receives the video stream and generates a reticule for the video stream. A display device simultaneously presents the video stream and the reticule. The reticule includes a horizon line and is based on a focal length of a lens of the camera and height of the camera above ground. The reticule includes curved and/or straight distance lines and curved or straight travel lines. The travel line(s) correspond to at least one aircraft component or a zone of importance and are based on location of the camera and trajectory of the aircraft.
Abstract:
Systems and methods for providing improved situational awareness for an aircraft while taxiing. An exemplary method generates reflectivity data based on an associated emission at a transceiver located on an aircraft. At a processor, targets are determined if a portion of the generated reflectivity data is greater than a predefined threshold. Then, the analyzed targets are determined as to whether they are within a dynamically defined three-dimensional envelope. The envelope is based on wingtip light module speed and trajectory. On a display device, an indication of the nearest target is presented at the associated range to the nearest target.
Abstract:
A server system for an aircraft is provided. In one embodiment, the server system comprises an aircraft server unit that is operative to receive data from one or more data sources, and a software development kit (SDK) application server in operative communication with the aircraft server unit. The SDK application server comprises one or more processing core modules configured to process the data from the one or more data sources, and one or more application modules including one or more aircraft tablet device logic modules that are configured to respectively execute one or more aircraft tablet device applications. The data processed by the one or more processing core modules is separated from the one or more aircraft tablet device logic modules. The SDK application server is configured to communicate with one or more external portable computing devices.
Abstract:
A server system for an aircraft is provided. In one embodiment, the server system comprises an aircraft server unit that is operative to receive data from one or more data sources, and a software development kit (SDK) application server in operative communication with the aircraft server unit. The SDK application server comprises one or more processing core modules configured to process the data from the one or more data sources, and one or more application modules including one or more aircraft tablet device logic modules that are configured to respectively execute one or more aircraft tablet device applications. The data processed by the one or more processing core modules is separated from the one or more aircraft tablet device logic modules. The SDK application server is configured to communicate with one or more external portable computing devices.
Abstract:
Systems and methods for aiding in pilot awareness of obstacles relative to aircraft features. An exemplary processor receives sensor information from one or more sensors mounted in an aircraft feature (e.g. light modules), determines if at least one obstacle is located within a predefined field of view based on the received sensor or database information and generates an image. The image includes an ownship icon having at least one feature representing wingtips of the aircraft and at least one indicator associated with the determined at least one obstacle. A display device presents the generated image. The display device presents a tip of a first sense coverage area adjacent to one wingtip feature associated with the port wing and a tip of the second sense coverage area adjacent to one wingtip feature associated with the starboard wing. The indicator is presented within at least one of the coverage areas.
Abstract:
A method for obtaining updated travel condition data at a vehicle is provided. The method identifies a subset of a predetermined travel route that is ahead of the vehicle, based on a selected distance quantity and a current position of the vehicle during traveling; and requests a set of data for the subset, the updated travel condition data comprising the set of data.
Abstract:
A method and apparatus is provided for enhancing an HMI (Human Machine Interface) mechanism to include continuous, sequential, and time-based navigation capabilities. Airspace data associated with a flight plan is received, and the airspace data associated with a region of the flight plan is displayed. A time scale substantially coextensive with the region is also displayed. To view a future region of the airspace, the time scale on the display is moved in a first direction, and to view a previous region, the time scale on the display is moved in a second, substantially opposite direction.
Abstract:
A method and apparatus is provided for enhancing an HMI (Human Machine Interface) mechanism to include continuous, sequential, and time-based navigation capabilities. Airspace data associated with a flight plan is received, and the airspace data associated with a region of the flight plan is displayed. A time scale substantially coextensive with the region is also displayed. To view a future region of the airspace, the time scale on the display is moved in a first direction, and to view a previous region, the time scale on the display is moved in a second, substantially opposite direction.
Abstract:
A system and method for monitoring a communication channel and displaying information. A signal is received via the communication channel and signal information is extracted from the signal. The signal information is monitored for a predetermined indicator. Selected information is extracted from the signal information when the predetermined indicator is detected in the signal information and then displayed.