Abstract:
Systems and methods are disclosed for environmental data sharing and context-based relevance determination. One method comprises receiving, by an environmental condition response system of a receiving vehicle, environmental data associated with a sending vehicle. Then, the environmental condition response system of the receiving vehicle analyzes the received environmental data for relevance based on contextual information of the receiving vehicle. Based on determining that the received environmental data is relevant to the receiving vehicle, the environmental condition response system determines a remedial action and sends instructions to perform the remedial action to a corresponding vehicle component system of the receiving vehicle.
Abstract:
A method of operating an augmented reality processed terrain and obstacle threat scouting service is provided. The method includes using at least one sensor of a monitoring vehicle to monitor terrain and obstacle data. The monitored terrain and obstacle data is compared with terrain and obstacle data in a terrain and obstacle database. A non-validated georeferenced delta is determined when the comparison of the monitored terrain and obstacle data with terrain and obstacle data in the terrain and obstacle database finds non-matching terrain and obstacle data. The non-validated georeferenced delta is transmitted to a ground distribution center, consumer vehicle and/or cloud based server. Non-validated georeferenced delta received at a consumer vehicle is differentiated from other terrain and obstacle data on a synthetic vision display. Non-validated georeferenced delta received at a ground distribution center is validated against at least one other source and validated and non-validated is distributed to subscribing consumers.
Abstract:
Flight deck systems are provided for integrating braking action information with flight deck runway functions. In one embodiment, the flight deck system includes a cockpit display device on which an airport display, such as a two dimensional or three dimensional Airport Moving Map, is generated. A controller is coupled to the cockpit display device and configured to produce a braking action graphic on the airport display indicative of the current braking action of a first runway approached for usage by the aircraft. The controller may determine the current braking action of the runway from braking action information received over a datalink. Further, in certain embodiments, the controller can assign the current braking action of the runway to a predetermined braking action category and produce the braking action graphic to visually identify the assigned braking action category.
Abstract:
A system and method are provided for calculating Mach number and true airspeed without reference to data from a pitot static sensor. The true airspeed and Mach number are calculated using the altitude information from GPS, IRS, Radio Altimeter and other onboard sensors other than the air data computer (ADC). The computed true airspeed or Mach number could be used to confirm the ADC information or in lieu of the ADC information when the ADC information is unreliable or unavailable.
Abstract:
A system and method are provided for calculating Mach number and true airspeed without reference to data from a pitot static sensor. The true airspeed and Mach number are calculated using the altitude information from GPS, IRS, Radio Altimeter and other onboard sensors other than the air data computer (ADC). The computed true airspeed or Mach number could be used to confirm the ADC information or in lieu of the ADC information when the ADC information is unreliable or unavailable.
Abstract:
A method and system for providing cost data via an operating cost app for a flight associated with a flight plan, by a computing device including: obtaining cost data of the flight plan by executing the operating cost app to implement an operating cost integrator application integrated with the operating cost app to interface with a plurality of service providers for retrieving operating cost data of the flight plan from each of the service providers; obtaining, by the at least one processor, real-time aircraft performance parameters affecting the actual cost of the flight including: a landing time and a takeoff time; determining an actual cost of the flight by using software solutions of the operating cost app, and by calculating ground charges at the airport derived from the sensed data by the operating cost app and presenting the actual cost of the ground charge, via a display device for displaying.
Abstract:
A method of operating an augmented reality processed terrain and obstacle threat scouting service is provided. The method includes using at least one sensor of a monitoring vehicle to monitor terrain and obstacle data. The monitored terrain and obstacle data is compared with terrain and obstacle data in a terrain and obstacle database. A non-validated georeferenced delta is determined when the comparison of the monitored terrain and obstacle data with terrain and obstacle data in the terrain and obstacle database finds non-matching terrain and obstacle data. The non-validated georeferenced delta is transmitted to a ground distribution center, consumer vehicle and/or cloud based server. Non-validated georeferenced delta received at a consumer vehicle is differentiated from other terrain and obstacle data on a synthetic vision display. Non-validated georeferenced delta received at a ground distribution center is validated against at least one other source and validated and non-validated is distributed to subscribing consumers.
Abstract:
Flight deck systems are provided for integrating braking action information with flight deck runway functions. In one embodiment, the flight deck system includes a cockpit display device on which an airport display, such as a two dimensional or three dimensional Airport Moving Map, is generated. A controller is coupled to the cockpit display device and configured to produce a braking action graphic on the airport display indicative of the current braking action of a first runway approached for usage by the aircraft. The controller may determine the current braking action of the runway from braking action information received over a datalink. Further, in certain embodiments, the controller can assign the current braking action of the runway to a predetermined braking action category and produce the braking action graphic to visually identify the assigned braking action category.
Abstract:
A system and method are provided for calculating Mach number and true airspeed without reference to data from a pitot static sensor. The true airspeed and Mach number are calculated using the altitude information from GPS, IRS, Radio Altimeter and other onboard sensors other than the air data computer (ADC). The computed true airspeed or Mach number could be used to confirm the ADC information or in lieu of the ADC information when the ADC information is unreliable or unavailable.
Abstract:
A system for validating ground determination of gross weight of aircraft includes sensor(s) that generates information regarding ground determination of gross weight while parked at parking bay; processing device that receives information regarding ground determination of gross weight of the aircraft from sensor(s); and computer memory communicatively coupled to processing device. Processing device determines ground determination based on information regarding ground determination of gross weight generated by sensor. Processing device determines gross weight in air after takeoff based on indicated airspeed, angle of attack, and thrust applied to aircraft. Processing device determines error between ground determination and air determination of gross weight taking into account reduction in gross weight due to fuel consumed since receiving ground determination. Processing device updates information regarding relationship between ground determination and air determination of gross weight. Computer memory stores updated information regarding relationship for use next time aircraft parks at parking bay.