摘要:
A method for loading an Unmanned Aerial Vehicle with one or more items is disclosed. The method includes positioning one or more items in specific positions within one of the Unmanned Aerial Vehicle and a container configured to be carried by the Unmanned Aerial Vehicle based on a Center of Gravity of each of the one or more items. The method also includes securing the one or more items in the specific positions within the one of the Unmanned Aerial Vehicle and the container to prevent the one or more items from shifting and changing a combined Center of Gravity of the one or more items combined with the one of the Unmanned Aerial Vehicle and the container during a flight of the Unmanned Aerial Vehicle.
摘要:
A system for weight measurement for an aircraft having a weight on wheels threshold between a flight mode and a ground mode includes a weight on wheels sensor arrangeable on a landing gear assembly of the aircraft, and a computing device receiving first detected data from the sensor related to strain on the landing gear assembly. The computing device calculates a rate of change of the strain over time to determine when the landing gear assembly reaches the weight on wheels threshold. The system also measures aircraft gross weight in a static condition.
摘要:
A system for determining load distribution of pieces of cargo in a cargo hold of a vehicle may include a plurality of tags, each of the plurality of tags mounted on a different piece of the pieces of cargo in the cargo hold and carrying information indicative of a weight of the different piece of cargo on which it is mounted; a plurality of sensors mounted in a spaced array along a length of the cargo hold, each of the sensors capable of reading from the tags the information indicative of the weights of the pieces of cargo; and a computer connected to receive from the plurality of sensors the information indicative of the weights and information indicative of the locations of the pieces of cargo in the cargo hold, the computer programmed to calculate therefrom a weight and/or center of gravity of the plurality of the pieces of cargo.
摘要:
A vehicle occupant sensor system for determining an occupant load distribution in a vehicle having a plurality of passenger seats may include a plurality of sensors, each of the plurality of sensors associated with a different one of the plurality of passenger seats for detecting an occupant in each of the plurality of passenger seats, and a weight of the detected occupant; and a computer connected to receive data from each of the plurality of sensors indicative of the weight and passenger seat location in the vehicle of the detected occupant in each of the plurality of passenger seats, and calculate from the data a total weight and center of gravity of the detected occupants in the plurality of passenger seats.
摘要:
A vehicle occupant sensor system for determining an occupant load distribution in a vehicle having a plurality of passenger seats may include a plurality of sensors, each of the plurality of sensors associated with a different one of the plurality of passenger seats for detecting an occupant in each of the plurality of passenger seats, and a weight of the detected occupant; and a computer connected to receive data from each of the plurality of sensors indicative of the weight and passenger seat location in the vehicle of the detected occupant in each of the plurality of passenger seats, and calculate from the data a total weight and center of gravity of the detected occupants in the plurality of passenger seats.
摘要:
A weight and center-of-gravity profile for an aircraft is determined prior to flight. An uncertainty band is determined for each of a plurality of points along a fuel vector for the planned flight. Each of the points along the fuel vector is compared to a predetermined flight limit (e.g., an FAA certified envelope). This comparison is used to decide whether the profile is suitable for flight of the aircraft. If so, an indication is provided to a user (e.g., on a display or by a text message) that the profile is suitable and the aircraft is ready for flight.
摘要:
A Center of Gravity Determination Apparatus for Fixed Wing Aerial Systems (NC#102046) comprising a lifting support structure designed to support a fixed wing aerial system (FWAS) wherein the lifting support structure allows the FWAS to freely pitch, a 3-D translation mechanism, operatively coupled to the lifting support structure, designed to precisely position the lifting support structure in the x-axis, y-axis and z-axis, a base support structure, operatively coupled to the 3-D translation mechanism, designed to support other components, at least one resting support structure, operatively coupled to the base support structure, designed to support the FWAS when the lifting support structure is not providing support to the FWAS and wherein the at least one resting support structure is designed to prevent the FWAS from pitching, rolling, or yawing when the lifting support structure is not providing support to the FWAS.
摘要:
A method and apparatus for determining the weight of a C-130 aircraft with jack-screw landing gear compression loads applied to a C-130 aircraft main landing gear strut jack-screw friction washer. For each main landing gear, a thru-hole load cell is mounted to the bottom of the jack-screw so that the weight of the aircraft bears on the load cell. The load cells are connected to a computer which measures the loads and determining the weight and center of gravity of the aircraft.
摘要:
The invention relates to a device and a method for controlling the loading and/or unloading process of an aeroplane. According to the invention, a parcel introduced into the aeroplane is identified, a weight is associated with the parcel, the position of the parcel inside the airplane is monitored, and the total weight and/or center of gravity of the aeroplane is calculated from the aeroplane information provided and the weights and positions of the parcels.
摘要:
A weight and balance system for accurately determining gross weight of an aircraft. The present invention integrates tire pressure measurements with strut pressure measurements to overcome the problem associated with the friction in the strut seals, and simultaneously overcome the problem with the large number of variables associated with using tire pressure measurement to determine load (weight on wheels). An example system includes a plurality of strut pressure sensors that generate strut pressure data for landing gear struts of the aircraft and a plurality of tire pressure sensors that generate tire pressure data for tires of the aircraft. A processing device that is in data communication with the strut and tire pressure sensors determines gross weight and center of gravity of the aircraft based on the received strut and tire pressure data.