Abstract:
The present disclosure relates to the field of communications technologies, and discloses a channel training method, apparatus, and system, so as to resolve a problem in which a newly added ONU in a PON cannot be registered and go online in time. In embodiments of the present disclosure, a first moment for triggering channel training is determined; normal data is stopped sending from the first moment and a training frame is generated; and then the training frame is sent to all ONUs in a PON, so that a target ONU trains an automatic adaptive equalizer based on the training frame, where the target ONU is at least one of all the ONUs in the PON. The solutions provided in the embodiments of the present disclosure are applicable to the equalizer training the ONU.
Abstract:
The present disclosure relates to methods and devices for processing a physical layer operations, administration, and maintenance (PLOAM) reset message. One example method includes receiving the PLOAM reset message comprising a reset level, the reset level comprising an indication of a component of an optical network unit (ONU) to be reset, and resetting the ONU according to the reset level.
Abstract:
Embodiments of this application disclose a board, an optical module, a MAC chip, a DSP, and an information processing method. The board in the embodiments of this application includes a media access control (MAC) chip, a digital signal processor (DSP), and an equalizer. The MAC chip is configured to send first information to the DSP at an optical network unit (ONU) online stage, where the first information includes a first ONU identifier. The DSP is configured to receive the first information, and determine a first reference equalization parameter, where the first reference equalization parameter is related to the first ONU identifier. The DSP is further configured to set an equalization parameter of the equalizer to the first reference equalization parameter.
Abstract:
The present invention discloses a passive optical network communications method, apparatus and system. The method includes: receiving, by an optical network unit, a first message sent by an optical line terminal, where the first message carries backup wavelength channel ID information; switching, by the optical network unit when the optical network unit detects a fault, an operating wavelength channel of the optical network unit to a backup wavelength channel identified by the backup wavelength channel ID information; and performing, by the optical network unit, data communication over the switched-to backup wavelength channel. In this way, fast protection switching of a passive optical network system is implemented and reliability of the system is improved.
Abstract:
The present invention provides a method, a device and a system for processing data during idle listening. The method includes: sampling, in an idle listening mode, a first analog signal by using an N-bit ADC, and sampling, in a transceiving mode, a second analog signal by using an M-bit ADC, where N and M are both integers, and N is less than M. Embodiments of the present invention can reduce power consumption of an ADC during idle listening.
Abstract:
The present application provides a method for wavelength switching on a multi-wavelength passive optical network, including: duplicating, when an optical network unit needs to switch from a first wavelength channel to a second wavelength channel, downlink data to be sent to the optical network unit into multiple copies, and sending the multiple copies of the downlink data to the optical network unit separately through multiple wavelength channels, where the multiple wavelength channels include at least the first wavelength channel and the second wavelength channel; sending a downlink wavelength switching command to the optical network unit to instruct the optical network unit to switch a downlink receiving wavelength of the optical network unit to a downlink wavelength of the second wavelength channel; and stopping downlink data duplication and sending the downlink data to the optical network unit through the second wavelength channel.
Abstract:
Embodiments of this application relate to the field of semiconductor technologies, and provide composite substrate that comprises: a first silicon carbide layer comprising monocrystalline silicon carbide, and a second silicon carbide layer bonded to the first silicon carbide layer, wherein defect density of at least a part of the second silicon carbide layer is greater than defect density of the first silicon carbide layer.
Abstract:
The present application provides a wavelength configuration method for a multi-wavelength passive optical network, which includes: scanning, by an ONU, a downstream receiving wavelength, and receiving, downstream wavelength information of each downstream wavelength channel that is broadcast by an OLT separately through each downstream wavelength channel of a multi-wavelength PON system; establishing, by the ONU, a downstream receiving wavelength mapping table, where an entry of the downstream receiving wavelength mapping table includes downstream receiving wavelength information, drive current information of a downstream optical receiver and receiving optical physical parameter information of the ONU; selecting, by the ONU, one downstream wavelength from the downstream wavelength information broadcast by the OLT, and setting, according to the drive current information of the downstream optical receiver recorded in a related entry of the downstream receiving wavelength mapping table, an operating wavelength of the downstream optical receiver to the selected downstream wavelength.
Abstract:
The present invention discloses a passive optical network communications method: reporting, by an optical network unit, ONU, a calibration record of the ONU, where the calibration record includes an ID of a calibrated wavelength channel; sending a first message to the ONU when the OLT determines, according to the calibration record, that a target wavelength channel ID corresponding to a target wavelength channel to which the ONU needs to switch is not in the calibration record, where the first message includes a forced wavelength switching flag; and instructing the ONU to switch to the calibrated target wavelength channel. In this way, the ONU can implement wavelength switching quickly after calibrating a new wavelength channel so as to perform data communication over the calibrated new wavelength channel.
Abstract:
This application provides a wavelength negotiation method of a multi-wavelength passive optical network, including: receiving a wavelength status table that is broadcast by an OLT over each downstream wavelength channel of a multi-wavelength PON system, where the wavelength status table is used to indicate information about available wavelengths of the multi-wavelength PON system and statistic information of registered ONUs of a corresponding wavelength channel; selecting an upstream transmit wavelength and a downstream receive wavelength according to the wavelength status table; and reporting information about the upstream transmit wavelength and information about the downstream receive wavelength to the OLT so that the OLT refreshes the wavelength status table. This application also provides a wavelength negotiation apparatus of the multi-wavelength passive optical network and a multi-wavelength passive optical network system.