Abstract:
An apparatus and method for controlling a vehicle speed based on information about forward vehicles that travel in the same lane may be acquired using Vehicle to Everything (V2X) communications in a cooperative adaptive cruise control (CACC) system. The CACC system includes a communication unit receiving vehicle information from neighboring vehicles using V2V communications; an information collection unit collecting vehicle information of the neighboring vehicles and the subject vehicle using sensors; and a control unit determining a forward vehicle and a far-forward vehicle using the sensors, selecting first and second target vehicles for being followed by the subject vehicle based on the vehicle information of the forward vehicle and the far-forward vehicle and the vehicle information of the neighboring vehicles, and controlling the driving speed of the subject vehicle based on speed information of the first and second target vehicles.
Abstract:
A method and an apparatus for detecting a pedestrian by a vehicle during night driving are provided, in which the apparatus includes: a first camera configured to take a first image including color information of a vicinity of the vehicle during night driving; a second camera configured to take a second image including thermal distribution information of the vicinity of the vehicle; a pedestrian detector configured to detect a non-pedestrian area by using the color information from the first image and detect a pedestrian area by excluding the non-pedestrian area from the second image; and a display configured to match and display the pedestrian area on the second image.
Abstract:
A steering control method and device for autonomous vehicles is provided. The steering control method includes sensing traffic lanes on a road on which a vehicle is being driven and deriving a vanishing point positioned on lines extending from the traffic lanes. A sensitivity of a steering angle that corresponds to a vertical coordinate of the vanishing point in a matrix and an initial steering angle that corresponds to a horizontal coordinate are then determined. Further, a steering control value that corresponds to the initial steering angle and the sensitivity of the steering angle are determined.
Abstract:
An apparatus and method for recognizing a driving field of a vehicle are provided. The apparatus includes a sensor that is configured to sense a location of a vehicle driving on a road and sense whether an object is adjacent to the vehicle. In addition, a controller is configured to detect whether the object is present and a lane of the road on which the vehicle is being driven is changed to detect a final lane candidate group on which the vehicle is positioned. The final lane candidate group is then displayed by the controller.
Abstract:
An apparatus for compensating for a beam angle of a multi-layer LiDAR includes: a beam angle calculation unit configured to calculate a distance d calculated by using ground data detected by a ground data detection unit and a beam angle of the multi-layer LiDAR by using a mounting height of the multi-layer LiDAR stored in a storage unit. When the beam angle calculated by a beam angle calculation unit is in a threshold range, a beam angle selection unit selects the calculated beam angle as the beam angle, when a beam angle compensation unit compensates for the initial beam angle by using the beam angle selected by the beam angle selection unit.
Abstract:
A vehicle speed control apparatus is provided. In particular, a storage configured to store a table (hereinafter, referred to an area table) recording an area corresponding to a speed of a vehicle and a condition of a road; an imaging device configured to take a front image of the vehicle; an image processor configured to calculate an area of a shape made by a driving lane of the vehicle and a preceding vehicle in the driving lane from the front image of the vehicle taken by the imaging device; a road information collector configured to collect condition information of the road; and a controller configured to set a speed corresponding to the condition information collected by the road information collector and the area calculated by the image processor as a driving speed of the vehicle, based on the area table.
Abstract:
Disclosed herein are a method and a system for recognizing a space of a road shoulder using an ultrasonic wave sensor, a radar and an imaging device. The method includes: controlling the radar to transmit a radar beam within a preset range based on the vehicle location; detecting a fixed object located within the preset range using a reflective wave of the radar beam received by the radar; calculating a distance between the fixed object and the vehicle using the radar when the fixed object is located within the preset range; detecting a solid line lane marking in a front image of a travel lane obtained from the imaging device; and recognizing the calculated distance between the fixed object and the vehicle as a space width of the road shoulder when the solid line lane is in the front image of the travel lane.
Abstract:
Disclosed herein is a method of recognizing the location of a current lane in which a vehicle is traveling, using a radar and an imaging device. The method includes: detecting the locations of the fixed objects using an object detector; capturing a photograph of the road surface ahead using an imaging device; calculating, by a controller, the entire width of a traveling road based on the locations of the fixed objects at the left side and the right side; calculating, by the controller the width of a traveling lane from the photograph of the road surface; and calculating, by the controller, the lane in which the vehicle is traveling based on the calculated width of the traveling lane and the entire width of the traveling road.
Abstract:
Disclosed herein is a driving control exchanging method for an autonomous vehicle by which a driving control may be easily exchanged between a driver and an autonomous vehicle, acquisition of a driving control by a child or a person who cannot drive is prevented, and the relative laws can be complied, making it possible to safely and conveniently manage the autonomous vehicle.
Abstract:
A traveling control system of an autonomous vehicle includes a 2D LIDAR sensor, a wheel speed sensor for detecting a speed of the vehicle, a yaw rate sensor for detecting a rotational angular speed of the vehicle, and an error corrector for determining a straight-line situation using a LIDAR point detected by the 2D LIDAR sensor, extracting a straight lateral distance value according to the result of determination, accumulating the LIDAR point according to the trajectory of traveling of the vehicle detected by the wheel speed sensor and the yaw rate sensor, estimating an error between the accumulated point and the extracted straight line, and calculating and feeding back an offset correction parameter of the yaw rate sensor when the estimated error value is greater than a predetermined threshold value to automatically correct an error parameter of the yaw rate sensor.