Abstract:
The invention includes a magnetoresistive memory device having a memory bit stack. The stack includes a first magnetic layer, a second magnetic layer, and a non-magnetic layer between the first and second magnetic layers. A first conductive line is proximate the stack and configured for utilization in reading information from the memory bit. The first conductive line is ohmically connecting with either the first or second magnetic layer. A second conductive line is spaced from the stack by a sufficient distance that the second conductive line is not ohmically connected to the stack, and is configured for utilization in writing information to the memory bit.
Abstract:
The present invention provides a method of forming an MRAM cell which minimizes the occurrence of electrical shorts during fabrication. A first conductor in a trench is provided in an insulating layer and an upper surface of the insulating layer and the first conductor is planarized. Then, a dielectric layer is deposited to a thickness slightly greater than the desired final thickness of a sense layer, which is formed later. The dielectric layer is then patterned and etched to form an opening for the cell shapes over the first conductor. Then, a permalloy is electroplated in the cell shapes to form the sense layer. The sense layer and dielectric layer are flattened and then a nonmagnetic tunnel barrier layer is deposited. Finally, the pinned layer is formed over the tunnel barrier layer.
Abstract:
Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
Abstract:
Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
Abstract:
A variable resistance memory element and method of forming the same. The memory element includes a substrate supporting a bottom electrode having a small bottom contact area. A variable resistance material is formed over the bottom electrodes such that the variable resistance material has a surface that is in electrical communication with the bottom electrode and a top electrode is formed over the variable resistance material. The small bottom electrode contact area reduces the reset current requirement which in turn reduces the write transistor size for each bit.
Abstract:
The invention includes methods of fabricating integrated circuitry. In one implementation, at least two different elevation conductive metal lines are formed relative to a substrate. Then, interconnecting vias are formed in a common masking step between, a) respective of the at least two different elevation conductive metal lines, and b) respective conductive nodes. Interconnecting conductive metal is provided within the interconnecting vias. Other aspects and implementations are contemplated.
Abstract:
This invention relates to memory technology and new variations on memory array architecture to incorporate certain advantages from both cross-point and 1T-1Cell architectures. The fast read-time and higher signal-to-noise ratio of the 1T-1Cell architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of these layouts. A single access transistor 16 is used to read multiple memory cells, which can be stacked vertically above one another in a plurality of memory array layers arranged in a “Z” axis direction.
Abstract:
This invention relates to an MRAM array architecture which incorporates certain advantages from both cross-point and 1T-1MTJ architectures during reading operations. The fast read-time and higher signal to noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by using a single access transistor to control the reading of multiple stacked columns of MRAM cells each column being provided in a respective stacked memory layer.
Abstract:
The invention includes a construction comprising an MRAM device between a pair of conductive lines. Each of the conductive lines can generate a magnetic field encompassing at least a portion of the MRAM device. Each of the conductive lines is surrounded on three sides by magnetic material to concentrate the magnetic fields generated by the conductive lines at the MRAM device. The invention also includes a method of forming an assembly containing MRAM devices. A plurality of MRAM devices are formed over a substrate. An electrically conductive material is formed over the MRAM devices, and patterned into a plurality of lines. The lines are in a one-to-one correspondence with the MRAM devices and are spaced from one another. After the conductive material is patterned into lines, a magnetic material is formed to extend over the lines and within spaces between the lines.
Abstract:
The invention encompasses a magnetoresistive memory device. The device includes a memory bit which comprises a stack having a first magnetic layer, a second magnetic layer, and a non-magnetic layer between the first and second magnetic layers. A first conductive line is proximate the stack and configured for utilization in reading information from the memory bit. A second conductive line is spaced from the stack by a greater distance than the first conductive line is spaced from the stack, and is configured for utilization in writing information to the memory bit. The invention also encompasses methods of storing and retrieving information in a cross-point array architecture.