Abstract:
A near-eye display device is disclosed that includes a pixel display configured to display multiple groups of pixels, in each frame of image, that are output by scanning. The device includes multiple semi-reflectors, where each semi-reflector is in a one-to-one correspondence with each group of pixels displayed by the pixel display unit. Each semi-reflector includes multiple inner platings that are disposed at different reflection angles. Each of the inner platings is in a one-to-one correspondence with each pixel subunits that is in a group of pixels corresponding to a semi-reflector in which the inner plating is located. Each semi-reflector is configured to be activated when the group of pixels corresponding to the semi-reflector is reflected, and reflect each pixel subunit which is in a one-to-one correspondence with each of the inner platings to a direction of an eyeball center by using all the inner platings included in the semi-reflector.
Abstract:
A method for returning a base station signal and a base station for implementing the method. The base station includes a first return unit located in a radio frequency system and a second return unit located in a baseband processing system. The first return unit is configured to perform analog modulation on an uplink analog signal of a first bandwidth to obtain an uplink analog signal of a second bandwidth, and send the uplink analog signal of the second bandwidth to the second return unit, where the second bandwidth is larger than the first bandwidth. The second return unit is configured to receive the uplink analog signal of the second bandwidth, demodulate the uplink analog signal of the second bandwidth to obtain the uplink analog signal of the first bandwidth.
Abstract:
A millimeter-wave (mmWave) assembly (1) comprising a first mmWave module (2), a second mmWave module (3), and a connector (4) configured to releasably interconnect the first mmWave module (2) and the second mmWave module (3). The connector (4) comprises a first connector element (5) associated with the first mmWave module (2). The first mmWave module (2) comprises a first substrate (7) and an mmWave radio frequency integrated circuit (RFIC) (8), and the second mmWave module (3) comprises a second substrate (9) and an mmWave antenna array (10). The connector (4) is configured to transmit at least one signal between the mmWave RFIC (8) and the mmWave antenna array (10) when the first mmWave module (2) and the second mmWave module (3) are interconnected.
Abstract:
A near-eye display and a near-eye display system are provided. The near-eye display includes a display panel, a collimation lens component, and an optical redirector. The display panel includes a plurality of pixels that are disposed in a tiling manner. The collimation lens component includes a plurality of collimation lenses, and the plurality of collimation lenses are in a one-to-one correspondence with the plurality of pixels. Each of the plurality of collimation lenses is configured to: convert, into collimated light, light emitted by a corresponding pixel, and input the collimated light into the optical redirector. The optical redirector includes a plurality of light convergence structures, and the plurality of light convergence structures are in a one-to-one correspondence with the plurality of collimation lenses. Each of the plurality of light convergence structures is configured to converge, on a focus of the near-eye display, collimated light input by a corresponding collimation lens.
Abstract:
Embodiments of the present disclosure disclose a method for base station backhaul, a related device and a system for base station backhaul. The method for base station backhaul includes: modulating data carried on at least two channels to corresponding subcarriers respectively, combining and modulating the subcarriers to a first OFDM signal, sending a first broadband OFDM signal to a remote radio unit, sending, by the remote radio unit, the first broadband OFDM signal to an antenna port after splitting and filtering the same; receiving a second broadband OFDM signal sent by the remote radio unit, demodulating subcarriers included in the second broadband OFDM signal, and sending data obtained by demodulating to corresponding channels respectively. By adopting the present disclosure, a utilization rate of a link channel may be improved, and high-capacity base station backhaul may be achieved under a low cost condition.
Abstract:
A graphene illuminator includes two electrodes, an accelerating electric field power supply, and several magnet sets, and further includes a graphene material used for providing free-electrons. The two electrodes are respectively disposed on both sides or at both ends of the graphene material, and meanwhile are both disposed on a plane where the graphene material is disposed; a positive electrode and a negative electrode of the accelerating electric field power supply are respectively connected to the two electrodes, to apply, in a first direction, an accelerating electric field to the graphene material; and the magnet sets are disposed on upper and lower sides of the plane where the graphene material is disposed, to generate a magnetic field perpendicular to the plane where the graphene material is disposed, and South poles and North poles of the magnet sets are arranged alternately to generate an alternating magnetic field in a second direction.
Abstract:
A planar waveguide includes a top PCB, a bottom PCB, multiple shielding metal blocks, and a metal plate. The top PCB has a groove. The groove and the bottom PCB form an air waveguide. Microstrips are disposed on the lower surface of the top PCB. The microstrips are positioned at both ends of the groove and disposed along an extension line of the groove. The multiple shielding metal blocks are disposed along the extension direction of the microstrips and the groove and positioned on both sides of the microstrips and the groove. A first conversion piece for implementing signal transmission between the microstrips and the air waveguide is further disposed between the microstrips and the bottom PCB under the groove.