Abstract:
A coil module includes a first planar coil winding that includes a plurality of turns of coils, at least one turn of first coil in the plurality of turns of coils includes at least one first cutting opening, and the first cutting opening divides the first coil into a first outer side part and a first inner side part along an extension direction of the coil, and a first target side part includes a first cutting groove, the first target side part is at least one of the first outer side part and the first inner side part, an extension direction of the first cutting groove is the same as an extension direction of the first target side part, and a width of a single first cutting groove is less than or equal to a width of a single first cutting opening.
Abstract:
A coil winding includes a first part of coils and a second part of coils located on opposite sides of an insulation layer, where the first part of coils comprises a first segment of conducting wire, and the second part of coils comprises a second segment of conducting wire. The first segment of conducting wire and the second segment of conducting wire each includes N cutting openings. Both the first segment of conducting wire and the second segment of conducting wire are divided into N+1 sub conducting wires by the N cutting openings. The N+1 sub conducting wires in the first segment of conducting wire and the N+1 sub conducting wires in the second segment of conducting wire are electrically coupled in a one-to-one manner to form N+1 pairs of sub conducting wires including a crossover structure.
Abstract:
A detection coil includes a first group of coils, a second group of coils, and a third group of coils that are continuously wound and coaxial, and the second group of coils is located between the first group of coils and the third group of coils. A coil that generates the first magnetic field is coaxial with the first group of coils, the second group of coils, and the third group of coils. A sum of the induced electromotive forces of the first group of coils, the second group of coils, and the third group of coils is zero. When a metal foreign matter exists, a sum of the induced electromotive forces of the first group of coils, the second group of coils, and the third group of coils is not zero.
Abstract:
A thin film inductor is disclosed, which includes a thin film magnetic core. The thin film magnetic core includes at least one magnetic thin film. In each magnetic thin film, at least one type-1 gap is provided. A length direction of the type-1 gap is parallel to a direction of hard magnetization of the magnetic thin film. If the thin film magnetic core comprises at least two magnetic thin films, the at least two magnetic thin films are laminated and overlap each other. A sum of widths of all type-1 gaps in each magnetic thin film is the same.
Abstract:
A coil module includes a first planar coil winding that includes a plurality of turns of coils, at least one turn of first coil in the plurality of turns of coils includes at least one first cutting opening, and the first cutting opening divides the first coil into a first outer side part and a first inner side part along an extension direction of the coil, and a first target side part includes a first cutting groove, the first target side part is at least one of the first outer side part and the first inner side part, an extension direction of the first cutting groove is the same as an extension direction of the first target side part, and a width of a single first cutting groove is less than or equal to a width of a single first cutting opening.
Abstract:
A wireless charging device is disclosed, which includes: a charging pad and a first controller. The charging pad includes a plurality of charging units, the plurality of charging units include a first charging unit and a second charging unit. When a first electromagnetic coupling strength between the first charging unit and the to-be-charged device is greater than or equal to a first threshold, the first controller is configured to control the first charging unit to separately charge the to-be-charged device. When both the second electromagnetic coupling strength between the second charging unit and the to-be-charged device and the first electromagnetic coupling strength are less than a first threshold, and are greater than or equal to a second threshold, the first controller is configured to control the first charging unit and the second charging unit to jointly charge the target to-be-charged device.
Abstract:
A thin film inductor is disclosed, which includes a thin film magnetic core. The thin film magnetic core includes at least one magnetic thin film. In each magnetic thin film, at least one type-1 gap is provided. A length direction of the type-1 gap is parallel to a direction of hard magnetization of the magnetic thin film. If the thin film magnetic core comprises at least two magnetic thin films, the at least two magnetic thin films are laminated and overlap each other. A sum of widths of all type-1 gaps in each magnetic thin film is the same.
Abstract:
A coil module includes a first planar coil winding and a second planar coil winding. A first coil of the first planar coil winding includes a first outer side part and a first inner side part. A first coil of the second planar coil winding includes a second outer side part and a second inner side part. An end part of the first outer side part is connected to an end part of the second inner side part, and an end part of the second outer side part is connected to an end part of the first inner side part.
Abstract:
The present invention discloses a circuit board, including a substrate and a magnetic core, where the magnetic core is embedded into the substrate, at least one turn of a winding conductor wound around the magnetic core is arranged on the substrate, each turn of the winding conductor includes a first end-surface conductor and a second end-surface conductor that are separately arranged on two ends of the magnetic core, and each turn of the winding conductor further includes a first side-surface conductor that penetrates through the magnetic core from an inner side of the magnetic core and a second side-surface conductor that penetrates through the magnetic core from an outer side of the magnetic core. The circuit board and the power conversion apparatus having the circuit board provided by the present invention, achieve larger inductance, save materials, and reduce cost for fabricating a power conversion apparatus.
Abstract:
The present invention provides a voltage conversion device and a method for adjusting common mode noise impedance, which relates to the circuit field, and enables a common mode impedance value of a noise source and an impedance value of an EMI filter to enter a mismatch state, so as to reduce a restriction on design of the EMI filter, so that a size of the EMI filter is smaller and utilization efficiency of the EMI filter is higher. The method is: adjusting a common mode impedance value of a noise source by adjusting a balanced impedance value in a balanced winding on a voltage conversion device, so as to enable the common mode impedance value of the noise source and an impedance value of an EMI filter to enter a mismatch state.