Abstract:
A three-dimensional display device includes an image display portion displaying a left eye image and a right eye image; and a parallax barrier facing the image display portion and directing the left eye image and the right eye image displayed by the image display portion towards a left eye and a right eye of a user, respectively.The parallax barrier may be formed with a liquid crystal display of a normally black mode of transmission.
Abstract:
A method and system for managing an inactive interval of a Base Station (BS) are provided, in which the BS transmits a preferred Low-Duty Mode (LDM) pattern to a coordination server that manages LDM patterns of BSs, receives an LDM pattern from the coordination server, the LDM pattern being determined for the BS by the coordination server, taking into account the preferred LDM pattern and LDM patterns of neighbor BSs, and operates in an active interval and an inactive interval according to the received LDM pattern.
Abstract:
A three-dimensional display device includes an image display portion for time-sharing a left eye image and a right eye image, and a parallax barrier for separating the left and right eye images provided from the image display portion into a direction of a left eye and a right eye of a user, respectively, by using a first and a second electrode set.A method includes applying a first driving voltage to the first electrode set during a first period, and applying a second driving voltage to the second electrode set during a second period. The second driving voltage has a level different from that of the first driving voltage.
Abstract:
Disclosed are a base station, a relay station, and a terminal according to a method for designing a cellular system for improving resource usage efficiency by reducing interference between relay stations and interference between the base station and the relay station. The relay station gets control signals that terminals served by the base station transmit, and registers terminals, levels of the control signals of which are bigger than a predetermined value, to a list of the interference terminals. The relay station checks an interference resource through resource allocation information of the base station, checks an available resource corresponding to a resource except the interference resource among a resource allocated by the base station, and allocates some of the available resource to the terminal.
Abstract:
A display device and a method of driving the display device are provided. The display device includes a scan driver for transmitting scan signals to a plurality of scan lines, a data driver for transmitting data signals to a plurality of data lines, and a signal controller for controlling the transmissions of the scan driver and the data driver. The scan driver and the data driver are configured to begin operating in response to a reset signal. The signal controller is configured to detect the reset signal, to determine whether the detected reset signal is a normal reset signal or an abnormal reset signal applied after an on time at which power is supplied to the scan driver and the data driver, and to apply a normal reset signal when the detected reset signal is determined to be an abnormal reset signal.
Abstract:
A three-dimensional display device includes an image display portion displaying left and right eye images, and a parallax barrier directing the left and right eye images respectively towards left and right eyes of a user.The parallax barrier includes first electrodes located on a first substrate, a first connection electrode electrically connecting the first electrodes, a first terminal electrode connected to an end of the first connection electrode, a first connection terminal connected to the first terminal electrode, second electrodes located between the first electrodes, a second connection electrode electrically connecting the second electrodes, a second connection terminal connected to an end of the second connection electrode, a common electrode located on a second substrate facing the first substrate, and a liquid crystal layer disposed between the first and second substrates.The first terminal electrode has a lower electric resistance than the first electrodes and the second electrodes.
Abstract:
In a method of manufacturing a semiconductor device having a stacked structure, an amorphous silicon layer may be formed on a first single crystalline silicon layer. An amorphous state of the amorphous silicon layer may be converted into a single crystalline state to form a preliminary second single crystalline silicon layer having protrusions. The protrusions may be polished to form a second single crystalline silicon layer.
Abstract:
An antenna assembly for wireless communications has various components to minimize signal influence when transmitting signals to minimize undesirable loop formation phenomena caused by (positive) feedback of signals. Signal wave scattering and diffraction causing back lobe radio frequency (RF) patterns are minimized by a particular antenna assembly structure having a reflector and at least one attenuating structural member, a metallic mesh wrapping the power cable of a feeder, a non-conductive antenna support structure, or any combination thereof. The dimensions of the various components, in particular the reflector and attenuators, can be varied according to desired wireless communications environment.
Abstract:
A photosensitive drum protecting device for use in a color electrophotographic printer is provided. The printer, in which developing device cartridges of various colors including photosensitive drums and developing rollers are installed, and a printing path contacting the photosensitive drums is formed, includes a photosensitive drum protecting device that simultaneously exposes or protects each of the photosensitive drums. All of the photosensitive drums disposed at front end portions of the developing device cartridges are covered by just one photosensitive drum protecting device. Thus, the complexity of the printer is reduced and the printer can be made more compact.
Abstract:
Provided are an electrolyte comprising an amide compound of a specific structure, in which an alkoxy group is substituted with an amine group, and an ionizable lithium salt, and an electrochemical device containing the same. The electrolyte may have excellent thermal and chemical stability and a wide electrochemical window. Also, the electrolyte may have a sufficiently low viscosity and a high ionic conductivity, and thus, may be usefully applied as an electrolyte of electrochemical devices using various anode materials.