Abstract:
A method for manufacturing a digital circuit is described including forming a plurality of field effect transistor pairs, connecting the field effect transistors of the field effect transistor pairs such that in response to a first transition from a first state of two nodes of the digital circuit and in response to a second transition from a second state of the nodes of the digital circuit the nodes each have an undefined logic state when, for each field effect transistor pair, the threshold voltages of the field effect transistors of the field effect transistor pair are equal and setting the threshold voltages of the field effect transistors of the field effect transistor pairs such that the nodes each have a predetermined defined logic state in response to the first transition and in response to the second transition.
Abstract:
In accordance with one embodiment, a circuit arrangement is provided including a circuit having a first terminal for a first supply potential and a second terminal for a second supply potential, wherein the first terminal is coupled to the first supply potential; a switch, by means of which the second terminal can be coupled to the second supply potential; a voltage source coupled to the second terminal; and a control device designed to open the switch in reaction to receiving a turn-off signal in an operating mode in which the switch is closed, and subsequently to control the voltage source in such a way that it varies the potential of the second terminal in the direction of the first supply potential.
Abstract:
In accordance with various embodiments, a circuit is provided, including an output node, a first potential varying stage, which is designed to couple the output node to a supply potential in reaction to an input signal, and a second potential varying stage, which is designed to couple the output node to the supply potential if the difference between the potential of the output node and the supply potential lies below a predefined threshold value.
Abstract:
According to one embodiment, a chip is described comprising a plurality of supply lines delimiting a plurality of cell areas and a gate comprising a first transistor and a second transistor, wherein the first transistor is located in a first cell area of the plurality of cell areas and the second transistor is located in a second cell area of the plurality of cell areas such that a supply line of the plurality of supply lines lies between the first cell area and the second cell area.
Abstract:
A method for reconstructing a physically uncloneable function (PUF) A for use in an electronic device is provided. The method includes generating a potentially erroneous PUF At and performing a preliminary correction of the potentially erroneous PUF At by means of a stored correction vector Deltat-1, to obtain a preliminarily corrected PUF Bt. The PUF A is reconstructed from the preliminarily corrected PUF Bt by means of an error correction algorithm. A corresponding apparatus is also provided.
Abstract:
A master-slave D flip-flop is disclosed having gates configured to supply two second intermediate signals as a function of first intermediate signals and a clock signal, and a slave circuit connected to a transfer circuit to form at least one output signal of the flip-flop from the second intermediate signals. The slave circuit is configured, when the second intermediate signals have, after a preceding pair of states, a predetermined pair of states, to maintain the at least one output signal as given by the preceding pair of states. The transfer circuit has a control input and is configured to generate the second intermediate signals to have the predetermined pair of states in response to a predetermined control signal state at the control input.
Abstract:
A storage element that is operable based on a system clock signal, the storage element including a clock gating circuitry configured to generate a gated clock signal based on at least one Boolean signal and the system clock signal or a preprocessed system clock signal, wherein the clock gating circuitry comprises physical connections of small capacitance such that tapping of at least one of the physical connections results in a hold-time violation. Also, a hardware-based cryptography accelerator or a secured processing system including at least one such storage element, and a method for operating at least one storage element.
Abstract:
A physically obfuscated circuit (POC) circuit including a plurality of subcircuits, each comprising at least one p-channel field effect transistor (FET) and at least one n-channel FET, connected such that the at least one n-channel FET, if supplied with an upper supply potential at its gate, supplies a lower supply potential to the gate of the at least one p-channel FET and the at least one p-channel FET, if supplied with the lower supply potential at its gate, supplies the upper supply potential to the gate of the at least one n-channel FET.
Abstract:
A semiconductor chip may have at least one p-channel field effect transistor (FET), at least one n-channel FET, a first and a second power supply terminal, wherein the at least one n-channel FET, if supplied with the upper supply potential at its gate, supplies the lower supply potential to the gate of the at least one p-channel FET and the at least one p-channel FET, if supplied with the lower supply potential at its gate, supplies the upper supply potential to the gate of the at least one n-channel FET, a precharge circuit to precharge the circuit to a first state, and a detection circuit configured to output an alarm signal if the circuit enters a second state.
Abstract:
A chip having a substrate region having a substrate contact, an RS latch having two complementary nodes representing a storage state of the RS latch, a control circuit having a control input and configured to connect one of the complementary nodes to a supply potential depending on a potential at the control input, wherein the control input is connected to the substrate contact, and an output circuit connected to an output of the RS latch and configured to trigger an alarm depending on the storage state of the RS latch.