Abstract:
A physically obfuscated circuit (POC) circuit including a plurality of subcircuits, each comprising at least one p-channel field effect transistor (FET) and at least one n-channel FET, connected such that the at least one n-channel FET, if supplied with an upper supply potential at its gate, supplies a lower supply potential to the gate of the at least one p-channel FET and the at least one p-channel FET, if supplied with the lower supply potential at its gate, supplies the upper supply potential to the gate of the at least one n-channel FET.
Abstract:
A cryptographic processor is described comprising a processing circuit configured to perform a round function of an iterated cryptographic algorithm, a controller configured to control the processing circuit to apply a plurality of iterations of the round function on a message to process the message in accordance with the iterated cryptographic algorithm and a transformation circuit configured to transform the input of a second iteration of the round function following a first iteration of the round function of the plurality of iterations and to supply the transformed input as input to the second iteration wherein the transformation circuit is implemented using a circuit camouflage technique.
Abstract:
According to one embodiment, a chip has a circuit with at least one p channel field effect transistor (FET); at least one n channel FET; a first and a second power supply terminal; wherein the n channel FET, if supplied with the upper supply potential at its gate, supplies the lower supply potential to the gate of the p channel FET; and the p channel FET, if supplied with the lower supply potential at its gate, supplies the upper supply potential to the gate of the n channel FET; wherein the logic state of the gate of the p channel FET and of the n channel FET can only be changed by at least one of the first and second supply voltage to the circuit; and a connection coupled to the gate of the p channel FET or the n channel FET and a further component of the semiconductor chip.
Abstract:
A method for reconstructing a physically uncloneable function (PUF) A for use in an electronic device is provided. The method includes generating a potentially erroneous PUF At and performing a preliminary correction of the potentially erroneous PUF At by means of a stored correction vector Deltat-1, to obtain a preliminarily corrected PUF Bt. The PUF A is reconstructed from the preliminarily corrected PUF Bt by means of an error correction algorithm. A corresponding apparatus is also provided.
Abstract:
According to one embodiment, a chip is described comprising a transistor level, a semiconductor region in, below, or in and below the transistor level, a test signal circuit configured to supply a test signal to the semiconductor region, a determiner configured to determine a behavior of the semiconductor region in response to the test signal and a detector configured to detect a change of geometry of the semiconductor region based on the behavior and a reference behavior of the semiconductor region in response to the test signal.
Abstract:
In accordance with various embodiments, a circuit is provided, including an output node, a first potential varying stage, which is designed to couple the output node to a supply potential in reaction to an input signal, and a second potential varying stage, which is designed to couple the output node to the supply potential if the difference between the potential of the output node and the supply potential lies below a predefined threshold value.
Abstract:
A chip is described including a semiconductor layer including doped regions; a metallization layer on the semiconductor layer and at least one cell row including p-channel field effect transistors and n-channel field effect transistors, wherein the doped regions form source regions and drain regions of the p-channel field effect transistors and the n-channel field effect transistors; contacts extending from the source regions, the drain regions and gate regions of the p-channel field effect transistors and the n-channel field effect transistors to the metallization layer, wherein the metallization layer is structured in accordance with a metallization grid such that the p-channel field effect transistors and the n-channel field effect transistors are connected to form one or more logic gates.
Abstract:
A master-slave D flip-flop is disclosed having gates configured to supply two second intermediate signals as a function of first intermediate signals and a clock signal, and a slave circuit connected to a transfer circuit to form at least one output signal of the flip-flop from the second intermediate signals. The slave circuit is configured, when the second intermediate signals have, after a preceding pair of states, a predetermined pair of states, to maintain the at least one output signal as given by the preceding pair of states. The transfer circuit has a control input and is configured to generate the second intermediate signals to have the predetermined pair of states in response to a predetermined control signal state at the control input.
Abstract:
According to one embodiment, a physical uncloneable function circuit for providing a protected output bit is described including at least one physical uncloneable function circuit element configured to output a bit of a physical uncloneable function value, a physical uncloneable function bit output terminal and a coupling circuit connected between the physical uncloneable function circuit element and the physical uncloneable function bit output terminal configured to receive a control signal, supply the bit to the physical uncloneable function bit output terminal for a first state of the control signal and supply the complement of the bit to the physical uncloneable function bit output terminal for a second state of the control signal.
Abstract:
According to an embodiment, an electronic transmission element is provided that has a first input and a first output. The first input is coupled to the first output by means of two first, parallel-connected complementary switches. The first switches each have a control input. The electronic transmission element further has a second input and a second output. The second input is coupled to the second output by means of two second, parallel-connected complementary switches. The second switches each have a control input. The first output is coupled to the control inputs of the second switches and the second output is coupled to the control inputs of the first switches.