Abstract:
An apparatus is provided which comprises: a processing core; and circuitry to select, for a first mode of operation of the processing core, a first operating point comprising a first operating frequency and a first operating load, based at least in part on a mathematical function that substantially defines variation of a frequency and a load of the processing core for a threshold power consumption, wherein the circuitry is to select the first operating point such that a first power consumption of the processing core at the first operating point is less than or equal to the threshold power consumption.
Abstract:
The present disclosure describes techniques related to media caching. A media hub device may include a media hub device configured to execute an operation on a current frame of media having a frame period. The media hub device may include a cache configured to provide, to a media accelerator of the media hub device, data associated with the frame period of the current frame.
Abstract:
Methods and apparatus relating to platform power consumption reduction via power state switching are described. In one embodiment, control logic causes a processor to enter a first low power consumption state (e.g., S0ix) instead of a second low power consumption state (e.g., S3) based on whether a threshold time period exists between a first wake event (e.g., corresponding to a first one of one or more awake requests) and a second wake event (e.g., corresponding to a second one of the one or more awake requests). Other embodiments are also claimed and disclosed.
Abstract:
Methods and apparatus relating to platform power consumption reduction via power state switching are described. In one embodiment, control logic causes a processor to enter a first low power consumption state (e.g., S0ix) instead of a second low power consumption state (e.g., S3) based on whether a threshold time period exists between a first wake event (e.g., corresponding to a first one of one or more awake requests) and a second wake event (e.g., corresponding to a second one of the one or more awake requests). Other embodiments are also claimed and disclosed.
Abstract:
Methods and apparatus relating to platform power consumption reduction via power state switching are described. In one embodiment, control logic causes a processor to enter a first low power consumption state (e.g., S0ix) instead of a second low power consumption state (e.g., S3) based on whether a threshold time period exists between a first wake event (e.g., corresponding to a first one of one or more awake requests) and a second wake event (e.g., corresponding to a second one of the one or more awake requests). Other embodiments are also claimed and disclosed.
Abstract:
Methods and apparatus relating to platform power consumption reduction via power state switching are described. In one embodiment, control logic causes a processor to enter a first low power consumption state (e.g., S0ix) instead of a second low power consumption state (e.g., S3) based on whether a threshold time period exists between a first wake event (e.g., corresponding to a first one of one or more awake requests) and a second wake event (e.g., corresponding to a second one of the one or more awake requests). Other embodiments are also claimed and disclosed.
Abstract:
The present disclosure describes techniques related to media caching. A media hub device may include a media hub device configured to execute an operation on a current frame of media having a frame period. The media hub device may include a cache configured to provide, to a media accelerator of the media hub device, data associated with the frame period of the current frame.
Abstract:
Methods and apparatuses relating to transactional power management are described. In one embodiment, a hardware apparatus includes a hardware processor having a core, a plurality of power domains to transition to one of a plurality of power states in response to a power management command for each power domain, and a power transaction unit to assign a first power management command as a first power transaction and a second power management command as a second power transaction for concurrent execution, perform a commit of the first power transaction and the second power transaction when there is no conflict between the first power transaction and the second power transaction, and perform an abort of the first power transaction and a commit of the second power transaction when there is a conflict between the first power transaction and the second power transaction.
Abstract:
Systems and methods of managing power in a computing platform may involve monitoring a runtime power consumption of two or more of a plurality of hardware components in the platform to obtain a plurality of runtime power determinations. The method can also include exposing one or more of the plurality of runtime power determinations to an operating system associated with the platform.
Abstract:
Systems and methods may provide for identifying runtime information associated with an active workload of a platform, and making an active idle state determination for the platform based on at least in part the runtime information. In addition, a low power state of a shared resource on the platform may be controlled concurrently with an execution of the active workload based on at least in part the active idle state determination.