Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of selecting location providers. For example, a location provider (LP) selector to operate in a mobile device may include a memory to store an Accuracy-Power Decision Matrix (APDM), the APDM to provide an allocation of a plurality of LPs according to a plurality of power consumption levels and a plurality of accuracy ranges; and a controller to receive from a location client of the mobile device a location request for a location fix of the mobile device, and to assign to the location request one or more LPs of the plurality of LPs, based on the APDM, an accuracy requirement of the location request, and a power consumption requirement of the location request.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Fine Timing Measurement (FTM) procedure with a responder station. For example, an apparatus may include logic and circuitry configured to cause a responder station to transmit an information element including FTM availability information, the FTM availability information including an indication of a plurality of channels and, for a channel of the plurality of channels, one or more FTM availability windows; and to be available to perform an FTM procedure on the channel during the FTM availability windows corresponding to the channel.
Abstract:
The disclosure relates to time-of-flight (TOF) positioning and device location within a wireless networks using a hybrid combination of Bluetooth Low Energy (BLE) and Wi-Fi signaling. In one exemplary embodiment, a hybrid responder engages in BLE discovery and negotiation with a mobile device seeking its location. The hybrid responder may engage its WiFi platform only to conduct the FTM procedure. By keeping the WiFi platform in deep sleep or Off mode, the hybrid responder can gain significant power savings.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, an apparatus may include circuitry and logic configured to cause an initiator station to process an FTM message received from a responder station, the first FTM message comprising a first field comprising a first Message Authentication Code (MAC); to process a second FTM message comprising the first field, a second field, and an FTM time value corresponding to the first FTM message, the first field comprising a second MAC, and the second field comprising the first MAC; and to determine whether or not to use the FTM time value for an FTM measurement, based on an authentication of the responder station according to the second MAC.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, an apparatus may include circuitry and logic configured to cause an initiator station to transmit an FTM request message to a responder station, the FTM request message comprising a challenge token; process an FTM measurement frame received from the responder station, the FTM measurement frame comprising a security token, which is based on the challenge token; and authenticate the responder station based on the security token.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Fine Timing Measurement (FTM) procedure with a responder station. For example, an apparatus may include logic and circuitry configured to cause a responder station to transmit an information element including FTM availability information, the FTM availability information including an indication of a plurality of channels and, for a channel of the plurality of channels, one or more FTM availability windows; and to be available to perform an FTM procedure on the channel during the FTM availability windows corresponding to the channel.
Abstract:
An apparatus to transmit a fine timing measurements (FTM) request from a first station to a second station. The FTM request including a request for suspending FTM measurements, if a threshold of movement has not been crossed since a last FTM measurement by the second station. The second station transmits in response to the FTM request a response including a motion indication of the second station.
Abstract:
In accordance with some embodiments, one or more low-power responder nodes may be utilized to provide better and lower cost coverage for fine timing measurement (FTM) requests. By advertising its availability to receive and respond to FTM requests, a low-power responder node may enter a low-power or deep sleep mode during times of unavailability. A low-power responder node may be powered by a battery, reducing the cost and deployment of nodes in a location determination network.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, an apparatus may include circuitry and logic configured to cause an initiator station to process an FTM message received from a responder station, the first FTM message comprising a first field comprising a first Message Authentication Code (MAC); to process a second FTM message comprising the first field, a second field, and an FTM time value corresponding to the first FTM message, the first field comprising a second MAC, and the second field comprising the first MAC; and to determine whether or not to use the FTM time value for an FTM measurement, based on an authentication of the responder station according to the second MAC.
Abstract:
An apparatus to transmit a fine timing measurements (FTM) request from a first station to a second station. The FTM request including a request for suspending FTM measurements, if a threshold of movement has not been crossed since a last FTM measurement by the second station. The second station transmits in response to the FTM request a response including a motion indication of the second station.