Abstract:
A packaged fuel unit and a refillable hydrogen generator that uses the fuel unit to produce hydrogen gas are disclosed. The fuel unit includes a reactant that can undergo a thermal decomposition reaction that produces hydrogen gas when heated to at least a minimum initiation temperature. The reactant is contained within a package that includes a poor thermal conductor with one or more thermal conductor sections for conducting heat from outside the package to the reactant. The hydrogen generator includes a holder with a cavity in which the fuel unit can be removably disposed and a heating system for heating the fuel unit when disposed therein. The hydrogen generator can be part of a fuel cell system including a fuel cell battery that is provided with hydrogen gas from the hydrogen generator.
Abstract:
Methods for generating hydrogen gas and power and related systems, including a hydrogen generator and a fuel cell system. The hydrogen generator includes a cartridge, a housing with a cavity to removably contain the cartridge, and an initiation system. The cartridge includes a casing; a plurality of pellets including a hydrogen containing material; a plurality of solid heat transfer members in contact with but not penetrating the casing; a hydrogen outlet in the casing; and a hydrogen flow path from each pellet to the hydrogen outlet. A plurality of heating elements is disposed inside the housing. Each heating element is disposed so heat can be conducted from the heating element through the casing to corresponding heat transfer member to initiate the release of hydrogen gas. The initiation system can selectively heat one or more pellets. Hydrogen gas can be provided to a fuel cell battery to generate power.
Abstract:
Methods and devices and aspects thereof for generating power using PEM fuel cell power systems comprising a rotary bed (or rotatable) reactor for hydrogen generation are disclosed. Hydrogen is generated by the hydrolysis of fuels such as lithium aluminum hydride and mixtures thereof. Water required for hydrolysis may be captured from the fuel cell exhaust. Water is preferably fed to the reactor in the form of a mist generated by an atomizer. An exemplary 750 We-h, 400 We PEM fuel cell power system may be characterized by a specific energy of about 550 We-h/kg and a specific power of about 290 We/kg. Turbidity fixtures within the reactor increase turbidity of fuel pellets within the reactor and improve the energy density of the system.
Abstract:
A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a container, and a liquid reactant storage area configured to contain a liquid including a first reactant. The hydrogen generator also includes a reaction area within the container, and a solid containing a second reactant within the reaction area and having a concentration gradient that varies along an axis such as length of the solid. The hydrogen generator further includes a liquid delivery member for delivering the liquid to the solid in the reaction area to generate hydrogen. The concentration gradient controls a reaction rate of the first and second reactants.
Abstract:
A packaged fuel unit and a refillable hydrogen generator that uses the fuel unit to produce hydrogen gas are disclosed. The fuel unit includes a reactant that can undergo a thermal decomposition reaction that produces hydrogen gas when heated to at least a minimum initiation temperature. The reactant is contained within a package that includes a poor thermal conductor with one or more thermal conductor sections for conducting heat from outside the package to the reactant. The hydrogen generator includes a holder with a cavity in which the fuel unit can be removably disposed and a heating system for heating the fuel unit when disposed therein. The hydrogen generator can be part of a fuel cell system including a fuel cell battery that is provided with hydrogen gas from the hydrogen generator.
Abstract:
A hydrogen generator and a fuel cell system including a fuel cell battery and the hydrogen generator. The hydrogen generator includes a cartridge, a housing with a cavity to removably contain the cartridge, and an initiation system. The cartridge includes a casing; a plurality of pellets including a hydrogen containing material; a plurality of solid heat transfer members in contact with but not penetrating the casing; a hydrogen outlet in the casing; and a hydrogen flow path from each pellet to the hydrogen outlet. A plurality of heating elements is disposed inside the housing. When the cartridge is in the cavity, each heating element is disposed so heat can be conducted from the heating element and through the casing and corresponding heat transfer member to initiate the release of hydrogen gas. The initiation system can selectively heat one or more pellets to release hydrogen gas as needed.
Abstract:
A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a container, and a liquid reactant storage area configured to contain a liquid including a first reactant. The hydrogen generator also includes a reaction area within the container, and a solid containing a second reactant within the reaction area and having a concentration gradient that varies along an axis such as length of the solid. The hydrogen generator further includes a liquid delivery member for delivering the liquid to the solid in the reaction area to generate hydrogen. The concentration gradient controls a reaction rate of the first and second reactants.
Abstract:
Disclosed is a fuel unit for a gas generator such as a hydrogen gas generator that can supply gas to a gas consuming system such as a fuel cell system. The fuel unit includes a housing containing a solid fuel composition and a heat producing material. The fuel composition contains gas releasing solid material that reacts to release gas when heated. The heat producing material reacts exothermically to produce heat. A plurality of quantities of the heat producing material are in thermal communication with corresponding portions of an unsegregated quantity the fuel composition such that, following initiation of a reaction of each quantity of the heat producing material, the quantity of heat producing material will heat the corresponding portion of the unsegregated quantity of the fuel composition, and the corresponding portion of the unsegregated quantity of the fuel composition will react to release a quantity of the gas.
Abstract:
A hydrogen generator and a fuel cell system including the hydrogen generator are disclosed. The hydrogen generator includes a reactant that undergoes a thermal decomposition reaction to produce hydrogen when heated. A laser is used to initiate the reaction. The reactant is contained in a reactant composition in a user-replaceable disc-shaped fuel unit. The reactant composition can be segregated into individual quantities. The fuel unit and the laser beam are periodically realigned by incrementally rotating the fuel unit and/or incrementally redirect the laser beam.