Abstract:
A method of making a package for a fuel unit, a fuel unit including the package, and a hydrogen generator including one or more of the fuel units are disclosed. The package includes a package strip made by forming apertures in a nonconductive substrate strip, forming conductor sections in a conductor strip, aligning the substrate and conductor strips, bonding the conductor sections to the substrate strip to cover the apertures, and removing non-bonded portions of the conductor strip. A package enclosing a hydrogen generating reactant is formed by securing a segment of the package strip to itself, to one or more other segments and/or to one or more other package components. One or more conductor sections in the package strip are in thermal contact with one or more quantities of reactant composition so heat can be transferred thermally decompose the reactant composition and generate hydrogen gas.
Abstract:
A method of making a package for a fuel unit, a fuel unit including the package, and a hydrogen generator including one or more of the fuel units are disclosed. The package includes a package strip made by forming apertures in a nonconductive substrate strip, forming conductor sections in a conductor strip, aligning the substrate and conductor strips, bonding the conductor sections to the substrate strip to cover the apertures, and removing non-bonded portions of the conductor strip. A package enclosing a hydrogen generating reactant is formed by securing a segment of the package strip to itself, to one or more other segments and/or to one or more other package components. One or more conductor sections in the package strip are in thermal contact with one or more quantities of reactant composition so heat can be transferred thermally decompose the reactant composition and generate hydrogen gas.
Abstract:
Disclosed is a fuel unit for a gas generator such as a hydrogen gas generator that can supply gas to a gas consuming system such as a fuel cell system. The fuel unit includes a housing containing a solid fuel composition and a heat producing material. The fuel composition contains gas releasing solid material that reacts to release gas when heated. The heat producing material reacts exothermically to produce heat. A plurality of quantities of the heat producing material are in thermal communication with corresponding portions of an unsegregated quantity the fuel composition such that, following initiation of a reaction of each quantity of the heat producing material, the quantity of heat producing material will heat the corresponding portion of the unsegregated quantity of the fuel composition, and the corresponding portion of the unsegregated quantity of the fuel composition will react to release a quantity of the gas.
Abstract:
A hydrogen generator and a fuel cell system including a fuel cell battery and the hydrogen generator. The hydrogen generator includes a cartridge, a housing with a cavity to removably contain the cartridge, and an initiation system. The cartridge includes a casing; a plurality of pellets including a hydrogen containing material; a plurality of solid heat transfer members in contact with but not penetrating the casing; a hydrogen outlet in the casing; and a hydrogen flow path from each pellet to the hydrogen outlet. A plurality of heating elements is disposed inside the housing. When the cartridge is in the cavity, each heating element is disposed so heat can be conducted from the heating element and through the casing and corresponding heat transfer member to initiate the release of hydrogen gas. The initiation system can selectively heat one or more pellets to release hydrogen gas as needed.
Abstract:
A packaged fuel unit and a refillable hydrogen generator that uses the fuel unit to produce hydrogen gas are disclosed. The fuel unit includes a reactant that can undergo a thermal decomposition reaction that produces hydrogen gas when heated to at least a minimum initiation temperature. The reactant is contained within a package that includes a poor thermal conductor with one or more thermal conductor sections for conducting heat from outside the package to the reactant. The hydrogen generator includes a holder with a cavity in which the fuel unit can be removably disposed and a heating system for heating the fuel unit when disposed therein. The hydrogen generator can be part of a fuel cell system including a fuel cell battery that is provided with hydrogen gas from the hydrogen generator.
Abstract:
A packaged fuel unit and a refillable hydrogen generator that uses the fuel unit to produce hydrogen gas are disclosed. The fuel unit includes a reactant that can undergo a thermal decomposition reaction that produces hydrogen gas when heated to at least a minimum initiation temperature. The reactant is contained within a package that includes a poor thermal conductor with one or more thermal conductor sections for conducting heat from outside the package to the reactant. The hydrogen generator includes a holder with a cavity in which the fuel unit can be removably disposed and a heating system for heating the fuel unit when disposed therein. The hydrogen generator can be part of a fuel cell system including a fuel cell battery that is provided with hydrogen gas from the hydrogen generator.
Abstract:
A fuel cartridge and a hydrogen generator are provided for supplying hydrogen gas to a hydrogen gas device. The fuel cartridge includes a fuel composition disposed in a container and a multi-layer package material, such as a laminate, enclosing the fuel composition therein. The laminate includes a polymer layer distal the fuel composition and a conductor layer proximate the fuel composition and including a preformed portion. The hydrogen generator includes a punch thermally coupled to a heater assembly and is configured to move between a retracted state and a puncture state. When the fuel cartridge is disposed in the hydrogen generating apparatus, the punch is configured to puncture the polymer layer and bring the coined portion into contact with the fuel composition. Heat is applied to a hydrogen containing material in the fuel composition through the punch and preformed portion to release hydrogen gas.
Abstract:
Methods for generating hydrogen gas and power and related systems, including a hydrogen generator and a fuel cell system. The hydrogen generator includes a cartridge, a housing with a cavity to removably contain the cartridge, and an initiation system. The cartridge includes a casing; a plurality of pellets including a hydrogen containing material; a plurality of solid heat transfer members in contact with but not penetrating the casing; a hydrogen outlet in the casing; and a hydrogen flow path from each pellet to the hydrogen outlet. A plurality of heating elements is disposed inside the housing. Each heating element is disposed so heat can be conducted from the heating element through the casing to corresponding heat transfer member to initiate the release of hydrogen gas. The initiation system can selectively heat one or more pellets. Hydrogen gas can be provided to a fuel cell battery to generate power.
Abstract:
A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a container, and a liquid reactant storage area configured to contain a liquid including a first reactant. The hydrogen generator also includes a reaction area within the container, and a solid containing a second reactant within the reaction area and having a concentration gradient that varies along an axis such as length of the solid. The hydrogen generator further includes a liquid delivery member for delivering the liquid to the solid in the reaction area to generate hydrogen. The concentration gradient controls a reaction rate of the first and second reactants.
Abstract:
A packaged fuel unit and a refillable hydrogen generator that uses the fuel unit to produce hydrogen gas are disclosed. The fuel unit includes a reactant that can undergo a thermal decomposition reaction that produces hydrogen gas when heated to at least a minimum initiation temperature. The reactant is contained within a package that includes a poor thermal conductor with one or more thermal conductor sections for conducting heat from outside the package to the reactant. The hydrogen generator includes a holder with a cavity in which the fuel unit can be removably disposed and a heating system for heating the fuel unit when disposed therein. The hydrogen generator can be part of a fuel cell system including a fuel cell battery that is provided with hydrogen gas from the hydrogen generator.