Abstract:
A method and apparatus are described for performing Internet Protocol (IP) Multimedia Subsystem (IMS) operation. A wireless transmit/receive unit (WTRU) registers an IMS service priority with an IMS network. The IMS service priority indicates the WTRU's priority in receiving IMS services. The WTRU may receive an IMS service from the IMS network based on the WTRU's IMS service priority. The IMS service priority may be indicated using a priority value and the WTRU may use Session Initiation Protocol (SIP) messaging to signal with the IMS network. The WTRU may register the service priority value using a q-value parameter in an SIP Contact field header. The WTRU may also register a public user identity with the IMS network and the public user identity may be shared with other IMS-capable WTRUs.
Abstract:
A method and apparatus for managing content storage subsystems in a communications network are disclosed. The communications network is equipped with a plurality of content storage subsystems. The content storage subsystems store local copies of content to facilitate the delivery and distribution of the content to wireless transmit/receive units, WTRUs. The network, which is equipped with a proxy server and an entry server, receives requests for content or general-purpose data referencing content and determines whether the content is stored in the storage subsystems. In addition, the network also performs content ingestion in order to store copies of the content in the storage subsystems and content modification in order to move content from one storage location to another to achieve optimal content storage and distribution.
Abstract:
Methods and apparatus are described. A mobility management entity (MME) includes an interface and a processor. The interface receive a packet data network (PDN) connectivity request from a wireless transmit/receive unit (WTRU) for use in local Internet protocol access (LIPA)/selected Internet protocol offload (SIPTO), wherein the PDN connectivity request includes an access point name (APN). The processor determines, in response to the received PDN connectivity request, whether LIPA/SIPTO access is permitted. The processor also establishes, in response to the received PDN connectivity request, a PDN connection between the WTRU, local gateway, serving gateway (SGW) and packet data network gateway (PDN GW) so that at least a portion of uplink/downlink data is transferred using LIPA/SIPTO.
Abstract:
Systems, methods, and instrumentalities are disclosed to provide privacy for inter-user equipment transfer (IUT) subscribers and remote parties involved in sessions with IUT subscribers. A first UE may establish a session with a remote party. The first UE may seek to perform an IUT to a second UE. The first UE may send a first request for the IUT to a service centralization and continuity application server (SCC AS). The SCC AS may receive the first request and perform an authorization. The SCC AS may determine that the requested IUT is allowed for the session. The SCC AS may send a second request to the remote party indicating the requested IUT. The remote party may evaluate the second request and may accept or reject the second request.
Abstract:
A method comprising: a Service Centralized and Continuity Application Server (SCC AS) receiving, from a first WTRU, a collaborative session request to replicate a media flow to a second WTRU; the SCC AS authorizing the request; the SCC AS allocating a media resource at a media resource function (MRF) for the media flow; the SCC AS establishing a second-WTRU access leg; the SCC AS updating a first-WTRU access leg for the first WTRU; and the SCC AS updating a remote leg to communicate the replicated media flow to the MRF, wherein, unless the remote party rejects the replication of the media flow, the media flow then flows from the remote party to the MRF, from the MRF to the first WTRU, and from the MRF to the second WTRU.
Abstract:
A method and apparatus are described for synchronizing mobile station (i.e., wireless transmit/receive unit (WTRU)) media flows during a collaboration session. Inter-WTRU transfer request messages, flow addition request messages and session update request messages may be exchanged between a plurality of WTRUs and a session continuity control application server (SCC-AS). Each of the messages may include a session description protocol (SDP) attribute line containing time synchronization information (e.g., a presentation time offset (PTO) information element (IE), a media flow group identity (ID) and a synchronization tolerance IE). The SCC-AS may update the time synchronization information and include the updated information in messages it sends to the WTRUs, which may re-synchronize their respective media flows based on the updated time synchronization information.
Abstract:
Techniques for inter-user equipment (UE) transfer (IUT) are disclosed. An application server may receive an IUT request for transfer of a media session toward at least one initial UE such that the media session is to be played by at least two target UEs. The server may determine eligibility for IUT with group synchronization based on the request. The server may send a message to the initial UE that IUT with group synchronization is not allowed on a condition that IUT with group synchronization is not allowed. Further, the server may trigger inter-destination media synchronization (IDMS) for group synchronization of media sessions among the UEs on a condition that IUT with group synchronization is allowed. The media sessions may include a first media session and second media session. The media stream may be played by at least two UEs that are geographically separated after the transfer.
Abstract:
An application server receives a request for service from a wireless transmit/receive unit (WTRU) associated with a home network that includes a home subscriber server (HSS) and a bootstrapping server function (BSF) coupled via a Zh reference point. The application server authenticates the WTRU at least in part by (i) redirecting the WTRU to an identity provider co-located with a network application function (IDP/NAF) and coupled to the BSF via a Zn reference point and (ii) receiving an assertion from the WTRU that the IDP/NAF has authenticated the WTRU based on user security settings retrieved from the BSF by the IDP/NAF over the Zn reference point. After authenticating the WTRU, the application server (i) retrieves user-specific Sh-reference-point-type data from the HSS via the IDP/NAF over the Zn and Zh reference points and (ii) provides the service to the WTRU based on the retrieved user-specific Sh-reference-point-type data.
Abstract:
A method and apparatus are described for synchronizing mobile station (i.e., wireless transmit/receive unit (WTRU)) media flows during a collaboration session. Inter-WTRU transfer request messages, flow addition request messages and session update request messages may be exchanged between a plurality of WTRUs and a session continuity control application server (SCC-AS). Each of the messages may include a session description protocol (SDP) attribute line containing time synchronization information (e.g., a presentation time offset (PTO) information element (IE), a media flow group identity (ID) and a synchronization tolerance IE). The SCC-AS may update the time synchronization information and include the updated information in messages it sends to the WTRUs, which may re-synchronize their respective media flows based on the updated time synchronization information.
Abstract:
A method and apparatus for interworking between a mobile network operator and an application provider are disclosed. A network application function (NAF) may be co-located with an OpenID provider such that an application server may communicate with the NAF to access a home subscriber server (HSS) via a bootstrapping server function (BSF). The interfaces between BSF and HSS, and between BSF and NAF may be enhanced to carry information that is available through Sh interface between the application server and the HSS. When the WTRU is roaming in a visited network, the application server may communicate with the visited network for charging and policing for serving the service request from the WTRU. The application server may be co-located with an NAF, and may authenticate the WTRU using Generic Bootstrapping Architecture, and may communicate with a BSF in a home network via an eZn-proxy function to access an HSS.