Abstract:
Methods and systems for measuring a distance include measuring a first interference pattern between a lens and a target surface using a light source at a first wavelength. A second interference pattern is measured between the lens and the target surface using a light source at a second wavelength, different from the first wavelength. An absolute measurement of a distance between the lens and the target surface is determined based on the first interference pattern and the second interference pattern.
Abstract:
Methods and systems for measuring a distance include measuring a first interference pattern between a lens and a target surface using a light source at a first wavelength. A second interference pattern is measured between the lens and the target surface using a light source at a second wavelength, different from the first wavelength. An absolute measurement of a distance between the lens and the target surface is determined based on the first interference pattern and the second interference pattern.
Abstract:
A force detector and method for using the same includes a lens. A cantilever is below the movable lens. A laser above the movable lens emits a beam of light through the movable lens, such that light reflects from the lens and the cantilever. A camera is configured to capture images produced by the light reflected from the lens and the light reflected from the cantilever. A processor is configured to determine a force between the movable lens and the cantilever based on a change in phase of the interference rings.
Abstract:
A force detector and method for using the same includes a movable lens having a spherical surface; a cantilever below the movable lens; a laser above the movable lens configured to emit a beam of light through the movable lens, such that light reflects from the spherical surface and the cantilever; a camera configured to capture images of interference rings produced by the light reflected from the spherical surface and the light reflected from the cantilever; and a processor configured to determine a force between the movable lens and the cantilever based on a change in phase of the interference rings.
Abstract:
Embodiments are directed to an information processing system for generating a corrected image of a sample. The system includes a detector, a memory communicatively coupled to the detector, and a post-detection image processor communicatively coupled to the memory and the detector. The detector is configured to detect data of a plurality of moving particles, wherein the data of the plurality of moving particles correspond to an uncorrected image of the sample, and wherein the uncorrected image includes defocus, astigmatism and spherical aberration. The post-detection image processor is configured to generate a corrected image of the sample based at least in part on processing the detected data of the plurality of moving particles.
Abstract:
An electron microscope system and a method of measuring an aberration of the electron microscope system are disclosed. A method of controlling an aberration of an electron microscope includes obtaining a dispersed energy distribution for electrons at a diffraction plane of the electron microscope and placing an aperture at a selected location of the dispersed energy distribution in the diffraction plane. The method measures displacement of an image of the aperture in an image plane of the electron microscope for the selected location of the aperture. The method determines an aberration coefficient of the electron microscope from the measured displacement and the selected location of the aperture and alters a parameter of an element of the electron microscope to control the aberration of the electron microscope based at least in part on the determined aberration coefficient.
Abstract:
A force detector and method for using the same includes a lens. A cantilever is disposed below the movable lens. A laser is disposed above the movable lens and is configured to emit a beam of light that reflects from a surface of the lens and the cantilever. A processor is configured to determine a force between the movable lens and the cantilever based on a change in phase in images produced by the light reflected from the spherical surface and the light reflected from the cantilever.
Abstract:
Methods and systems for measuring a distance include measuring a first interference pattern between a lens and a target surface using a light source at a first wavelength. A second interference pattern is measured between the lens and the target surface using a light source at a second wavelength, different from the first wavelength. An absolute measurement of a distance between the lens and the target surface is determined based on the first interference pattern and the second interference pattern.
Abstract:
A force detector and method for using the same includes a movable lens having a spherical surface; a cantilever below the movable lens; a laser above the movable lens configured to emit a beam of light through the movable lens, such that light reflects from the spherical surface and the cantilever; a camera configured to capture images of interference rings produced by the light reflected from the spherical surface and the light reflected from the cantilever; and a processor configured to determine a force between the movable lens and the cantilever based on a change in phase of the interference rings.
Abstract:
Embodiments are further directed to an information processing system for generating a corrected image of a sample. The system includes a detector, a memory communicatively coupled to the detector, and a post-detection image processor communicatively coupled to the memory and the detector. The system is configured to perform a method that includes detecting, by the detector, data of a plurality of moving particles, wherein the data of the plurality of moving particles correspond to an uncorrected image of the sample, and wherein the uncorrected image includes defocus, astigmatism and spherical aberration. The method further includes generating, by the post-detection image processor, a corrected image of the sample based at least in part on processing the detected data of the plurality of moving particles.