Abstract:
A micro-electro-mechanical system device is disclosed. The micro-mechanical system device comprises a first silicon substrate comprising: a handle layer comprising a first surface and a second surface, the second surface comprises a cavity; an insulating layer deposited over the second surface of the handle layer; a device layer having a third surface bonded to the insulating layer and a fourth surface; a piezoelectric layer deposited over the fourth surface of the device layer; a metal conductivity layer disposed over the piezoelectric layer; a bond layer disposed over a portion of the metal conductivity layer; and a stand-off formed on the first silicon substrate; wherein the first silicon substrate is bonded to a second silicon substrate, comprising: a metal electrode configured to form an electrical connection between the metal conductivity layer formed on the first silicon substrate and the second silicon substrate.
Abstract:
MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
Abstract:
A micro-electro-mechanical system device is disclosed. The micro-mechanical system device comprises a first silicon substrate comprising: a handle layer comprising a first surface and a second surface, the second surface comprises a cavity; an insulating layer deposited over the second surface of the handle layer; a device layer having a third surface bonded to the insulating layer and a fourth surface; a piezoelectric layer deposited over the fourth surface of the device layer; a metal conductivity layer disposed over the piezoelectric layer; a bond layer disposed over a portion of the metal conductivity layer; and a stand-off formed on the first silicon substrate; wherein the first silicon substrate is bonded to a second silicon substrate, comprising: a metal electrode configured to form an electrical connection between the metal conductivity layer formed on the first silicon substrate and the second silicon substrate.
Abstract:
A micro-electro-mechanical system device is disclosed. The micro-mechanical system device comprises a first silicon substrate comprising: a handle layer comprising a first surface and a second surface, the second surface comprises a cavity; an insulating layer deposited over the second surface of the handle layer; a device layer having a third surface bonded to the insulating layer and a fourth surface; a piezoelectric layer deposited over the fourth surface of the device layer; a metal conductivity layer disposed over the piezoelectric layer; a bond layer disposed over a portion of the metal conductivity layer; and a stand-off formed on the first silicon substrate; wherein the first silicon substrate is bonded to a second silicon substrate, comprising: a metal electrode configured to form an electrical connection between the metal conductivity layer formed on the first silicon substrate and the second silicon substrate.
Abstract:
A MEMS device is disclosed. The MEMS device comprises a MEMS substrate. The MEMS substrate includes a first semiconductor layer connected to a second semiconductor layer with a dielectric layer in between. MEMS structures are formed from the second semiconductor layer and include a plurality of first conductive pads. The MEMS device further includes a base substrate which includes a plurality of second conductive pads thereon. The second conductive pads are connected to the first conductive pads. Finally, the MEMS device includes a conductive connector formed through the dielectric layer of the MEMS substrate to provide electrical coupling between the first semiconductor layer and the second semiconductor layer. The base substrate is electrically connected to the second semiconductor layer and the first semiconductor layer.