摘要:
A fuel metering control system for an internal combustion engine having a plurality of cylinders. The system includes an air/fuel ratio sensor and engine operating condition detecting means for detecting engine operating conditions at least including engine speed and engine load. The basic quantity of fuel injection is determined by retrieving mapped data according to the engine speed and engine load. An adaptive controller is provided to calculate a first feedback correction coefficient to correct the quantity of basic fuel injection such that the detected air/fuel ratio is brought to a desired air/fuel ratio, and second and third feedback loops are provided for calculating feedback correction coefficients to correct the quantity of fuel injection. The output quantity of fuel injection is determined on the basis of the basic quantity of fuel injection and the feedback correction coefficients.
摘要:
A fuel metering control system for an internal combustion engine having a plurality of cylinders. The system includes an air/fuel ratio sensor and engine operating condition detecting means for detecting engine operating conditions. The basic quantity of fuel injection is determined by retrieving mapped data according to the engine speed and engine load. A controller is provided to calculate a feedback correction coefficient to correct the quantity of basic fuel injection such that variance between individual cylinder air/fuel ratios is decreased. The quantity of fuel injection is further corrected by a fuel adhered to an intake manifold wall.
摘要:
A fuel metering control system for an internal combustion engine having a plurality of cylinders. The system includes an air/fuel ratio sensor and engine operating condition detecting means for detecting engine operating conditions at least including engine speed and engine load. The basic quantity of fuel injection is determined by retrieving mapped data according to the engine speed and engine load. An adaptive controller is provided to calculate a feedback correction coefficient to correct the quantity of basic fuel injection such that the detected air/fuel ratio is brought to a desired air/fuel ratio value is provided for calculating feedback correction coefficients to correct the quantity of fuel injection. The output quantity of fuel injection is determined on the basis of the basic quantity of fuel injection and the feedback correction coefficients, and in addition, fuel adhered on an intake manifold wall.
摘要:
Fuel metering control system in an internal combustion engine utilizing adaptive control having an intake manifold wall's fuel adherence plant. In the system, an actual air/fuel ratio in the individual cylinders is accurately estimated using an exhaust manifold model with an observer. Also, an actual cylinder air flow is estimated using a fluid model. Based on them, a desired cylinder fuel flow is determined by dividing the actual cylinder air flow by a desired air/fuel ratio and an actual cylinder fuel flow is determined by dividing the actual cylinder air flow by the estimated actual air/fuel ratio. The adaptive controller operates such that the actual cylinder fuel flow constantly coincides with the desired cylinder fuel flow. In an embodiment, in order to respond the change in wall adherence parameters, a compensator is connected in series with the wall adherence plant, a virtual plant incorporating the compensator is postulated and when the transfer characteristics of the virtual plant is other than 1 or thereabout, the adaptive controller is operated to have a transfer characteristics inverse thereto. At the same time, a method for estimating cylinder air flow inducted in the engine using the aforesaid fluid model is explained.
摘要:
A system for controlling fuel metering for a multi-cylinder internal combustion engine. In the system, a feedback loop having an adaptive controller and an adaptation mechanism coupled to the adaptive controller for estimating controller parameters .theta. is provided. The adaptive controller calculates a feedback correction coefficient using internal variables including the controller parameters .theta., to correct a quantity of fuel injection obtained by retrieving mapped data by engine speed and engine load, to bring a detected air/fuel ratio to a desired air/fuel ratio. The internal variables of the adaptive controller are set such that the feedback correction coefficient is 1.0 or thereabout, when the engine operation has shifted from an open-loop control region to the feedback control region.
摘要:
A fuel metering control system for an internal combustion engine including feedback loop having an adaptive controller and an adaptation mechanism that estimates a controller parameters .theta.. The adaptive controller corrects the quantity of fuel injection to bring a controlled variable at least obtained based on an output of said air/fuel ratio sensor to a desired value. The adaptation mechanism is input with the controlled variable once per prescribed crank angle such as a TDC of a certain cylinder of a four-cylinder engine and estimates the controller parameters (vector) such that the adaptive controller is operated to synchronize with every 4 prescribed crank angle such as every TDC of all cylinders of the internal combustion engine, or with every prescribed crank angle such as every TDC. With the arrangement, the system enables adaptive control of a commercially practical internal combustion engine without degrading control performance.
摘要:
A fuel metering control system for an internal combustion engine, having a feedback loop. In the system, the quantity of fuel injection (Tim) to be supplied to the engine (plant) is determined outside of the feedback loop. A first feedback correction coefficient (KSTR) is calculated using an adaptive law, while a second feedback correction coefficient (KLAF(KSTRL)), whose control response is inferior to the first feedback correction coefficient is calculated, using a PID control law. The feedback correction coefficients are calculated such that the plant output (air/fuel ratio) is brought to a desired (desired air/fuel ratio). A Variable(s) of one coefficients is replaced with a value of the other coefficient such that the one coefficient becomes close to the other. Moreover, the second coefficient (KLAF(KSTRL) is used at a time of returning from open-loop to the feedback control.
摘要:
A fuel metering control system for an internal combustion engine, having a feedback loop. In the system, the quantity of fuel injection (Tim) to be supplied to the engine (plant) is determined outside of the feedback loop. A first feedback correction coefficient (KSTR) is calculated using an adaptive law, while a second feedback correction coefficient (KLAF(KSTRL)), whose control response is inferior to the first feedback correction coefficient is calculated using a PID control law. The feedback correction coefficients are calculated such that the plant output (air/fuel ratio) is brought to a desired value (desired air/fuel ratio). The engine is equipped with a variable valve timing mechanism which switches the valve timing between characteristics for low engine speed and those for high engine speed. If the characteristic for high engine speed is selected, the second feedback correction coefficient is used for fuel injection quantity correction.
摘要:
A fuel metering control system for an internal combustion engine, having a feedback loop. In the system, the quantity of fuel injection (Tim) to be supplied to the engine (plant) is determined outside of the feedback loop. A first feedback correction coefficient (KSTR) is calculated using an adaptive law, while a second feedback correction coefficient (KLAF), whose control response is inferior to that of the first feedback correction coefficient, is calculated using a PID control law. The feedback correction coefficients are calculated such that the plant output (air/fuel ratio) is brought to a desired value (desired air/fuel ratio). The coefficients are calculated at least in parallel and either of them is selected to be multiplied by the quantity of fuel injection (Ti).
摘要:
A system for controlling fuel metering for a multi-cylinder internal combustion engine, having a feedback loop which has an adaptive controller and an adaptation mechanism coupled to the adaptive controller for estimating controller parameters .theta.. The adaptive controller calculates a feedback correction coefficient using internal variables that include at least said controller parameters .theta., to correct a basic quantity of fuel injection obtained by retrieving mapped data by engine speed and engine load, to bring a detected air/fuel ratio to a desired air/fuel ratio. In the system, the internal variables of the adaptive controller are set to predetermined values, when the supply of fuel is resumed after termination of the fuel cutoff, and the adaptive controller calculates the feedback correction coefficient based on the internal variables set to the predetermined value.