Abstract:
A temperature-based clock frequency controller is implemented in an integrated circuit such as a microprocessor. The temperature-based clock frequency controller includes a register to store a threshold temperature value, a thermal sensor, and clock adjustment logic to decrease a clock frequency in response to the thermal sensor indicating that the threshold temperature value has been exceeded. In a microprocessor implementation, the microprocessor contains a plurality of thermal sensors each placed in one of a plurality of different locations across the integrated circuit and an averaging mechanism to calculate an average temperature from the plurality of thermal sensors. Threshold adjustment logic increases the threshold temperature value to a new threshold temperature value in response to the thermal sensor indicating that the threshold temperature value has been exceeded. Threshold adjustment logic further lowers the new threshold temperature to detect decreases in temperature. In addition, the microprocessor contains halt logic that halts operation of the microprocessor when the temperature attains a critical temperature.
Abstract:
A temperature averaging thermal sensor is implemented in an integrated circuit such as a microprocessor. The temperature averaging thermal sensor monitors the temperature of the integrated circuit in a plurality of different locations across the integrated circuit, calculates an average temperature and generates an output to indicate that the average temperature of the integrated circuit has attained a pre-programmed threshold temperature. In a microprocessor implementation, the microprocessor contains a plurality of thermal sensors each placed in one of a plurality of different locations across the integrated circuit and an averaging mechanism to calculate an average temperature from the plurality of thermal sensors. Sense circuitry reads the programmable input values and generates an interrupt when the temperature of the microprocessor reaches a threshold temperature. In addition to a temperature averaging thermal sensor, the microprocessor contains halt logic that halts operation of the microprocessor when the temperature attains a critical temperature.
Abstract:
An integrated, on-chip thermal management system providing closed-loop temperature control of an IC device and methods of performing thermal management of an IC device. The thermal management system comprises a temperature detection element, a power modulation element, a control element, and a visibility element. The temperature detection element includes a temperature sensor for detecting die temperature. The power modulation element may reduce the power consumption of an IC device by directly lowering the power consumption of the IC device, by limiting the speed at which the IC device executes instructions, by limiting the number of instructions executed by the IC device, or by a combination of these techniques. The control element allows for control over the behavior of the thermal management system, and the visibility element allows external devices to monitor the status of the thermal management system.
Abstract:
An integrated, on-chip thermal management system providing closed-loop temperature control of an IC device and methods of performing thermal management of an IC device. The thermal management system comprises a temperature detection element, a power modulation element, a control element, and a visibility element. The temperature detection element includes a temperature sensor for detecting die temperature. The power modulation element may reduce the power consumption of an IC device by directly lowering the power consumption of the IC device, by limiting the speed at which the IC device executes instructions, by limiting the number of instructions executed by the IC device, or by a combination of these techniques. The control element allows for control over the behavior of the thermal management system, and the visibility element allows external devices to monitor the status of the thermal management system.
Abstract:
A method and apparatus for power throttling to manage the temperature of an IC. A temperature sensor is manufactured on the same die as the IC components. The temperature sensor generates an output in response to junction temperature of the IC components. A state machine is coupled to receive the output of the temperature sensor and to provide power reduction functions in response to the temperature sensor output exceeding a maximum thermal value. The maximum thermal value is less than the maximum allowable temperature of the IC corresponding to maximum power consumption. Thus, the invention reduces power consumption at a thermal value lower that a potentially catastrophic value rather than shutting down the IC when catastrophic failure is imminent.
Abstract:
An integrated circuit has circuitry formed by a fabrication process. The circuitry has an electrical characteristic that is different from a predetermined value due to variations in the fabrication process. The electrical characteristic is responsive to a level of a current, and a current source of the integrated circuit is configured to be selectably enabled to adjust the level of the current to move the electrical characteristic closer to the predetermined value.